Polymer and Carbon Coated Porous Titania for Reversed Phase and Preparative Liquid Chromatography

Eastern Analytical Symposium 2006

BINGWEN YAN1, CLAYTON V. MCNEFF1, JOCHEN WINKLER2
1ZirChrom Separations, Inc. 617 Pierce St., Anoka, MN 55303,
2Sachtleben, Duisburg, Germany

Specialists in High Efficiency, \textit{Ultra-Stable} Phases for HPLC
Outline

• Surface Chemistry of Titania
• Selectivity Comparison of Sachtopore-RP, Silica C18, ZirChrom-CARB, and ZirChrom-PBD
• Chemical and Thermal Stability Testing
• Effect of Lewis Base Mobile Phase Additive on Elution of Basic Compounds
• Applications

Conclusion - The titania phases show similar selectivity to their zirconia counterparts, and have excellent stability from pH 1-12 and up to 100 °C.
Surface Chemistry of Titania-Based Supports for HPLC

Weak Brönsted Acid: \(\text{TiOH} + \text{OH}^- \leftrightarrow \text{TiO}^- + \text{H}_2\text{O} \)

Weak Brönsted Base:

Strong Lewis Acid:

SCX mode
Polyethylene Coated Titania

\[
\left[\text{CH}_2-\text{CH}_2 \right]_n \quad \text{Polyethylene}
\]
22 Non-electrolyte Solutes

Nonpolar
- Benzene
- Toluene
- Ethylbenzene
- p-xylene
- Propylbenzene
- Butylbenzene

Polar
- Bromobenzene
- p-Dichlorobenzene
- Anisole
- Methylbenzoate
- Naphthalene
- Acetonphenone

HB Donor
- Benzonitrile
- Nitrobenzene
- p-Nitrotoluene
- p-Nitrobenzyl Chloride
- Benzophenone

HB Donor Substances
- Benzylalcohol
- 3-Phenyl Propanol
- N-Benzyl Formamide
- Phenol
- p-Chlorophenol
Selectivity Comparison

LC Conditions: Mobile phase, 40/60 ACN/Water; Flow rate, 1.0 ml/min.; Temperature, 30 °C; Injection volume, 5ul; Detection at 254nm.

<table>
<thead>
<tr>
<th>Solute</th>
<th>ZirChrom-PBD</th>
<th>ZirChrom-CARB</th>
<th>Silica C18</th>
<th>Sachtopore-RP</th>
</tr>
</thead>
<tbody>
<tr>
<td>benzyl formamide</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>benzy alcohol</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-phenyl propanol</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-chlorophenol</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acetophenone</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>benzonitrile</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nitrobenzene</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>methylbenzoate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>anisole</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-chlorotoluene</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chlorobenzene</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bromobenzene</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>naphthalene</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-xylene</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-dichlorobenzene</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>benzene</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>toluene</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ethyl benzene</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>propyl benzene</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>butyl benzene</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Log (k' Solute/k' benzene)
LC Conditions: Mobile phase, 40/60 ACN/Water; Flow rate, 1.0 ml/min.; Temperature, 30 °C; Injection volume, 5ul; Detection at 254nm.

Chemical Stability

Exposure and Evaluation Conditions: Mobile phase, 15/85 ACN/0.1M Nitric acid, pH 1.0, or 0.01M Tetramethylammoniumhydroxide, pH 12.0; Flow rate, 1.0 ml/min.; Temperature, 30 °C; Injection volume, 5 μl; Detection at 254 nm; Column, 50 mm x 4.6 mm i.d., Sachtopore-RP (part# TI01-0546).
Temperature Stability at 100 °C

Exposure and Evaluation Conditions: Mobile phase, 15/85 ACN/water; Flow rate, 1.0 ml/min.; Temperature, 100 °C with Metalox heater; Injection volume, 5 ml; Detection at 254 nm; Column, 50 mm x 4.6 mm i.d., Sachtopore-RP (part# TI01-0546).
Effect of Lewis Base Additive on Separation of Basic Drugs

LC Conditions: Mobile phase: 30/70 ACN/20 mM buffer (pH=7). (A) ammonium acetate, (B) ammonium fluoride, (C) ammonium phosphate. flow rate: 1ml/min, temperature: 40 °C. Wavelength: 254 nm. Column, 50 mm x 4.6 mm i.d., Sachtopore-RP (part# TI01-0546). Solutes: (1) lidocaine, (2) quinidine, (3) tryptamine, (4) amitriptyline, and (5) nortriptyline.
Effect of Ionic Strength on Separation of Basic Drugs

LC Conditions: Mobile phase: 30/70 ACN/phosphate buffer (pH=7). (A) 10 mM, (B) 15 mM, (C) 15 mM. flow rate: 1ml/min, temperature: 40 °C. Wavelength: 254 nm. Column, 50 mm x 4.6 mm i.d., Sachtopore-RP (part# TI01-0546). Solutes: (1) lidocaine, (2) quinidine, (3) tryptamine, (4) amitriptyline, and (5) nortriptyline.
LC Conditions: Mobile phase, 74% (50 mM H$_3$PO$_4$ + 5 mM KH$_2$PO$_4$), 26% ACN, pH 10; Flow rate, 1.0 ml/min.; Temperature, Ambient; Injection volume, 20 µl; Detection at 220 nm; Column, Sachtopore-RP (300 Å, 3 µm, 150 x 4 mm).
Semi-Prep Separation of Pentifylline (vasodilator)

Particle Sizes:
3, 5, 10, 20, 40, 80
100 micron
1 mm

Pores sizes:
60, 100, 300,
500, 1000,
2000 Angstroms

LC Conditions: Mobile phase, (+ 10 mM Na₂B₄O₇ + 1 mM H₃BO₃), pH 8.8; Flow rate, 1.0 ml/min.; Temperature, Ambient; Injection volume, 20 μl; Detection at 254 nm; Column, Sachtopore®-RP (300 Å, 3 μm, 150 x 4 mm).
Comparison Between Sachtopore-CARB and ZirChrom-CARB

Sachtopore-CARB has somewhat similar selectivity compared to ZirChrom-CARB.

LC Conditions: Mobile phase, 50/50 ACN/water; Flow rate, 1.0 ml/min.; Temperature, Ambient; Injection volume, 5 μl; Detection at 254 nm; Column: 50 x 4.6 mm, 5 μm.

Solutes: (1) acetone, (2) p-cresol, (3) ethylbenzene, (4) nitrobenzene
Conclusions

• The Sachtopore-RP shows similar selectivity to ZirChrom-PBD (ODS-like for neutrals).
• The Sachtopore-RP has excellent stability from pH 1-12 and up to 100°C.
• The type of Lewis base buffer has a profound effect on selectivity for Sachtopore-RP.
• Basic (amine) analytes generally undergo RP/CEX mixed-mode retention mechanism on Sachtopore-RP.
• Sachtopore-CARB has somewhat similar selectivity compared to ZirChrom-CARB.
For More Information, Visit Us at Booth 220

For more information and web access to the free Buffer Wizard: www.zirchrom.com