Efficient Separation of Important Quaternary Drugs On Zirconia HPLC columns

* Consultant, 983 Greenbriar Dr, State College, PA

Richard A Henry* and Hillel K. Brandes Supelco/Sigma Aldrich, 595 N Harrison Rd, Bellefonte, PA

SIGMA-ALDRICH

Review of Zirconia Particles

Rigid and very stable over wide range of conditions
Physical properties of analytical particles:

Parameter	Property
Pore Diameter (Å)	250- 300
Porosity	0.45
Particle Diameter (µm)	3, 5, 10
Density (gm/cc)	5.8 (2.5 x silica)
Pore Volume (cc/g)	0.13
Surface Area (m²/g)	22
Lewis Acid Site (µmol/m²)	4-5

Various surface modifications available: Discovery[®] Zr-PS, Discovery[®] Zr-PBD, Discovery[®] Zr-Carbon, Discovery[®] Zr-CarbonC18

Zirconia Surface¹

Surface properties of zirconia oxide of chromatographic relevance:

- Charge:

 $Zr-OH_2^+$ $\xrightarrow{}_{pK_a=4.0}$ $Zr-OH + H^+$ $\xrightarrow{}_{pK_a=8.1}$ $Zr-O^- + H^+$

- Lewis acid* sites:

Coordinately unsaturated zirconium (IV) sites

very reactive toward Lewis bases

Zirconia Lewis Acid-Base Chemistry

Cation-Exchange Behavior of Zirconia

Coordinated Lewis base can make surface an effective cation-exchanger. This is particularly the case with phosphate at near neutral pH; only hydroxide is stronger Lewis base.

- If surface is to be regenerated, must strip off phosphate with hydroxide solution (high pH) devoid of phosphate.

Mixed-Mode Behavior of Coated Zirconia Phases

- Polymer coating: hydrophobic retention
- Coordinated Lewis Base ions: ion-exchange retention
 - $Zr-L^{-}:X^{+} + A^{+} = Zr-L^{-}:A^{+} + X^{+}$ (very important mechanism)
- Zirconols:

- Zr-O:X⁺ + A⁺ = Zr-O:A⁺ + X⁺ (unimportant mechanism)

 A^+ = analyte cation, X^+ = counterion, L^- = adsorbed Lewis base anion SIGMA-ALOF

Mixed-Mode Behavior of Coated Zirconia Phases

- Retention of ionic analytes modulated by pH, choice of buffer/salt, buffer/salt concentrations, and temperature
- Selectivity affected by these mobile phase parameters as well

Zirconia Displays Unique Ion Exchange (IEX) Selectivity

Mixed-mode zirconia can provide separation that is difficult to accomplish on high-purity C18-silica²

Discovery C18 is > 30x more hydrophobic than Discovery Zr-PS as measured by retention of butylbenzene To what extent, is IEX responsible for retention of the herbicides on the coated zirconia phase?

Separation of paraquat and diquat on Discovery[®] C18 vs. Discovery[®] Zr-PS C18-silica conditions: Discovery C18, 15cm x 4.6mm, 3µm particles; 5% CH₃CN in 25mM H₃PO₄ (to pH 7 with NH₄OH); 35°C, 1mL/min, UV 290nm Zr-PS conditions: Discovery Zr-PS, 7.5cm x 4.6mm, 3µm particles; 50% CH₃CN in 25mM H₃PO₄, 25mM NH₄F, (to pH 8 with NH₄OH); 65°C, 3mL/min.

Quantitative Retention Parameters in IEX LC³

Thermodynamic retention model* where k is HPLC retention factor, Const related to packing capacity and ion-exchange equilibrium constant, and y/x is ratio of net charges on analyte and displacement ions.

$$\log k_{A} = \text{Const} - \frac{y}{x} \log \left[C_{m} \right]$$

 This relationship predicts a linear relationship between log k and log displacement ion concentration with a slope of -1 when analyte and displacement ion have the same net charge, and analyte behaves as point charge.

Experimental Approach

- The objective is to quantitate the potential contribution of IEX to the retention mechanism of the mixed-mode phase Discovery Zr-PBD.
- The analytes will be chromatographed at a constant buffer concentration (and constant pH) while varying the concentration of counterion (sodium, in this case); this will be repeated at three different concentrations of acetonitrile.

Conditions:

```
Column: Discovery Zr-PBD; 3\mu, 2.1 x 100 mm

Mobile Phase A: 50:x:y, (10 mM sodium phosphate, pH 7) : x : y

Mobile Phase B: 50:x:y, (10 mM sodium phosphate, pH 7, 42 mM NaCl) : x : y

notes: pH-7 buffer prepared from calculated amounts of mono- and dibasic

sodium phosphate

x + y = 50 (i.e. 50% of final volume)

x = water; y = acetonitrile, either 10, 20, or 30

total conc of sodium in mobile phase B, is 50 mM.

Flow: 0.3 mL/min

Temperature: 80° C

Inj: 1 \muL

Detection: 225 nm
```


Data Analysis of Quaternary Herbicides: log plots

Example of Data Analysis

Data Summary

	Slope			
Analyte	10% MeCN	20% MeCN	30% MeCN	
diquat	-2.114	-2.166	-2.180	
paraquat	-2.064	-2.096	-2.110	

- Recall, slope is parameter that indicates degree of IEX as retention mechanism.
- With analyte charge of 2 and counterion charge of 1, slope of -2 indicates that the charges on analyte are fully accessible to the IEX sites on the chromatographic surface.
- IEX is very effective as mechanism of retention on this phase (polymer-coated zirconia).

Retention of Herbicides vs Percent Organic

- Hydrophobic interaction on the polymer-coated zirconia is a component of retention for diquat and paraguat, but not as dramatic as that of IEX.
- Neither level of organic nor concentration of mobile phase counterion impacts selectivity to a significant degree.
- Level of organic and concentration of mobile phase counterion control retention, therefore either type of gradient can be effective.

SIGMA-ALDRICH

Anticholinergics as Probes for IEX Retention

pipenzolate

mepenzolate

scopolamine

propantheline

ipratropium

- With the exception of scopolamine, these are all quaternary ammonium compounds.
- The quats have a charge of +1
- Scopolamine $pK_a = 7.75$
- pH of mobile phase = 7

Data Analysis: log plots

Example of Data Analysis

	Slope			
Analyte	10% MeCN	20% MeCN	30% MeCN	
propantheline	-0.781	-0.950	-0.962	
pipenzolate_3	-0.871	-0.968	-0.991	
pipenzolate_2	-0.865	-0.961	-0.991	
mepenzolate	-0.871	-0.974	-0.991	
ipratropium	-0.845	-0.981	-1.030	
methscopolamine	-0.884	-1.010	-1.060	
scopolamine	-0.500	-0.548	-0.512	

- With counterion and analyte of equivalent valence, a slope of -1 indicates charges on analyte are fully accessible to the charges on the chromatographic surface, and retention mode is IEX.
- Results with the quaternary analytes indicate that IEX can be largely responsible for retention of cationic analytes on the zirconia phase, esp at high organic conc.
- Scopolamine, with smaller formal charge, is less retained by IEX, and less retained overall.
- At low levels of organic, less of retention is accounted for by IEX, but IEX is still most significant.

IEX Retention Models⁴

Pure IEX

 $eta_{\scriptscriptstyle I\!E\!X}$ is a constant that accounts for the phase ratio and distribution ratio of the IEX process as well as the total number of available ion-exchange sites per unit area

Plot of k vs $1/[C^+]$, will be linear with an extrapolated intercept of 0 (i.e. at infinitely high $[C^+]$, retention will be zero).

- Mixed RP and IEX
 - One-site (RP & IEX take place simultaneously at single site)

 $k = k_{RP} \cdot \frac{K}{[C^+]}$ K is a constant that accounts for the IEX equilibrium and the total number of available ion-exchange sites per unit area

Plot of k vs $1/[C^+]$, will be linear with an extrapolated intercept of 0 (i.e. at infinitely high $[C^+]$, retention will be zero).

Two-site (RP & IEX take place at spatially distinct sites)

$$k = k_{RP} + \frac{\beta_{IEX}}{[C^+]}$$

Plot of k vs $1/[C^+]$, will be linear with an extrapolated finite intercept.

Data Analysis: reciprocal plots

- At low organic, Finite (> 0) intercepts on k axis, indicate two-site retention mechanism.
- At low organic, propantheline exhibits significant retention by reversed-phase; much less so for other compounds.
- At higher organic, virtually all reversedphase retention is supressed.

100

Conclusions

Zirconia is an attractive LC matrix because of it's physical and chemical stability; furthermore, it can be readily modified with hydrophobic coatings, and derivatized by virtue of it's reactive Lewis acid sites.

- Phosphate is an effective Lewis base in conferring cation-exchange properties to the zirconia surface; ion-exchange can be a very significant component of retention on phosphate-derivatized zirconia phases.
- Mixed-mode cation-exchange zirconia phases (polymer-coated, phosphate-dervivatized) provide an attractive option for resolution of cationic analytes.
- Ion-exchange retention is typically modulated by level of counterion and choice of counterion; be sure to consider solubility of counterion/salt in mobile phase. Temperature can be significant effector of retention.
- Mixed-mode ion-exchange zirconia phases are amenable to elution by ionic gradients, or organic gradients, or combinations thereof.

References

- 1. Blackwell, J.A. & Carr, P.W. 1991. J Liq Chrom 14: 2875
- 2. Henry, R.A. et. al. 2005. EAS presentation.
- 3. U. D. Neue, E. S. Grumbach, J. R. Mazzeo, K. V. Tran and D. M. Wagrowski-Diehl, Chapter 6 in *Bioanalytical Separations* (I. D. Wilson, Ed.), Handbook of Analytical Separations, Vol 4, 2003, Elsevier Science B. V. (presented by Uwe Neue at FACSS 2002).
- 4. Yang, X. et. al. 2003. J Chrom A 996: 13.
- 5. Hu, Y, et.al. 2002. J Chrom A 968: 17.
- 6. Yang, X., et. al. 2003. Anal Chem 75: 3153.

