Synthesis of Stable Zirconia Based Chiral Stationary Phases for Enantiomer Separations and Fast Chiral Selector Screening

Clayton V. McNeff¹, Bingwen Yan¹
Yini Wang², Shengxiang Ji², Daniel Nowlan², Thomas R. Hoye²
¹ZirChrom Separations, Inc. 617 Pierce St., Anoka, MN 55303,
²University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455.

Specialists in High Efficiency, Ultra-Stable Phases for HPLC.
Goal: To Make Zirconia Based Chiral Stationary Phases for Fast Chiral Selector Screening

- Why Zirconia?
- Synthetic Approach
 - Surface Chemistry
 - Building a zirconia-based CSP
 - Proof of concept
- Chiral Separations on Zirconia Based CSPs
- Effect of Mobile Phase Additives on α, k' and N
- Stability Study
- Conclusion – Careful selection of an anchor group results in a stable CSP that can be stripped off and reattached under high pH condition. This offers the possibility of regeneration or use for Chiral Selector Screening.
Surface Chemistry of Zirconia

Brönsted Acid: \[\text{ZrOH} + \cdot\text{OH} \rightleftharpoons \text{ZrO}^- + \text{H}_2\text{O} \]

Brönsted Base: \[\text{Zr} \rightleftharpoons \text{Zr} \quad + \quad \text{H}^+ \rightleftharpoons \text{Zr} \rightleftharpoons \text{Zr} \]

RPO}_3^{2-} \text{ or Catechol

Lewis Acid: \[\text{Zr}^{4+}: \text{H}_2\text{O} + \text{R-COO}^- \rightleftharpoons \text{Zr}^{4+}:\cdot\text{OOC}-\text{R} + \text{H}_2\text{O} \]
New Way to Attach Chiral Selectors to Zirconia Surface

\[\text{ZrO}_2 \] = Lewis Base (Anchor) \[\triangle \] = Chiral Selector
Example Attachment and De-attachment Cycle

• Pass a solution of 20 mM N-(4-nitrobenzoyl)-L-glutamic acid (CSP) in tetrahydrofuran for 10 minutes at a column temperature of 60°C and a flow rate of 1 mL/min.
• Flushed column with 100% THF for 10 minutes at 2 mL/min at ambient temperature.
• Separate a racemate solution of (±)-2,2,2-trifluoro-1-(9-anthyl)ethanol.
• Strip the CSP by flushing the column with a 50 mM solution of tetramethylammonium hydroxide solution (pH 12) for 20 minutes at 60°C using a flow rate of 1 mL/min.
• Repeat procedure using the same CSP
Comparison between the initial and final separation of (±)-2,2,2-trifluoro-1-(9-anthyl)ethanol leucine ester during a single CSP screening cycle. Chromatographic conditions: mobile phase: 99/1 hexane/IPA; flow rate: 1 ml/min; temperature: 30 °C, solute concentration = 1mg/mL, 5 microliter injection.
Anchors

1) APPA (Aminopropylphosphonic acid)
2) DHNP (3,4-Dihydroxynorephedrine)
3) ASPA (Aspartic acid)

PDA (Pamidronic acid)

Phase I Anchors

Phase II Anchor
Three-Point Interactions

Example of Lewis Acid-Base Modified Zirconia CSPs

Lewis acid-base reaction

EEDQ coupling reaction

CS = Chiral Selector
Chiral Selectors

(S)-DNB-L-Leucine ((S)-Leu)

(S)-DNB-L-Phenylglycine ((S)-PG)

(S)-N-[1-(1-naphthyl)ethyl]succinamic acid ((S)-NESA)
Example of Lewis Acid-Base Modified Zirconia CSPs

Lewis acid-base reaction

(Pamidronic acid)

Steric Site

EEDQ coupling reaction

H-donor

π-acceptor
Selectivity Comparison Between PDA Anchored Zr (S)-Leu and APPA Anchored (S)-Leu

Selectivity for both anchors is very similar.
Retention Comparison Between PDA Anchored Zr (S)-Leu and APPA Anchored (S)-Leu

Retention for both anchors is different.
Efficiency Comparison Between PDA Anchored Zr (S)-Leu and APPA Anchored (S)-Leu

Efficiency on PDA anchored Zr (S)-Leu is much better than on APPA anchored Zr (S)-Leu.
Chiral Separation on Zr (S)-Leu (pi-acceptor phase)

Trifluoranthryl Ethanol
Conditions: 99/1 Hexane/IPA, Flow=1
\[\alpha = 1.15 \]

1-Naphthyl-Leucine Ester
Conditions: 99/1 Hexane/IPA, Flow=1
\[\alpha = 16.8 \]

Napropamide
Conditions: 99/1 Hexane/IPA, Flow=1
\[\alpha = 1.47 \]
Chiral Separations on Zr (S)-NESA (pi-donor phase)

- **(R/S)-3,5-Dinitro-N-(1-phenylethyl)benzamide.**
 - Conditions: Pre-mixed 88.9/11/0.1 Hexane/IPA/TFA, F=1 ml/min, 30 °C.
 - $\alpha = 2.18$

- **(R/S)- (R/S)-N-3,5-dintrobenzoyl-\(\alpha\)-amino-2,2-dimethyl-4-pentenyl dimethyl phosphonate.**
 - Conditions: Pre-mixed 88.9/11/0.1 Hexane/IPA/TFA, F=1 ml/min, 30 °C
 - $\alpha = 1.28$

- **(R/S)-(3,5-dinitrobenzoyl)-phenylglycine**
 - Conditions: Machine mixed 15/85 (99.9/0.1 MeOH/TFA) / (89/11 Hexane/IPA), F=1 ml/min, 30 °C
 - $\alpha = 1.65$
Mobile Phase Effect of adding MeOH on Separation of (R/S)-N-3,5-dintrobenzoyl-\(\alpha\)-amino-2,2-dimethyl-4-pentenyl dimethyl phosphonate on Zr (S)-NESA

1. Conditions: 89/11 Hexane/IPA, F=1 ml/min, 30 °C.
 - \(\alpha=1.59\)
 - N2=971

2. Conditions: 90 / 2 / 8 (99/1 Hexane/IPA) / MeOH / (70/30 Hexane/IPA), F=1 ml/min, 30 °C
 - \(\alpha=1.42\)
 - N2=6,425

3. Conditions: 80 / 10 / 10 (99/1 Hexane/IPA) / MeOH / (70/30 Hexane/IPA), F=1 ml/min, 30 °C
 - \(\alpha=1.25\)
 - N2=13,315
Stability of Zr-(S)-NESA at pH 2

Stability of Zr-(S)-DNB-Leu at pH 8

Scale-up the Production of Zr (S)-NESA

7.5 g zirconia per batch used for coating

4X scale-up 30 g zirconia per batch used for coating

Napropamide
Conditions: 90/10 Hexane/IPA, Flow=1
Conclusions

• Five new CSPs were attached to zirconia using the PDA anchor, including:
 \[\pi\text–acceptors}: \text{Zr (S)}\text{-Leu, Zr (R)}\text{-PG, and Zr (S)}\text{-PG}\]
 \[\pi\text–donors}: \text{Zr (R)}\text{-NESA, Zr (S)}\text{-NESA}\]
• Small amounts of methanol in the mobile phase had a large effect on efficiency, retention, and selectivity.
• The new Zirconia-based CSPs were found to be fairly stable in reversed-phase mobile phase from pH 2 to pH 8.
• The CSP synthesis is reproducible.
• Chiral selector screening is possible on the new zirconia-based CSPs.
• Acknowledgement: National Institutes of Health Grant (Phase II SBIR) 2R44HL070334-02A2.
Thanks very much for listening!

Visit Us at Booth 220

For more information and web access to the free Buffer Wizard: www.zirchrom.com