Chiral Separations of Pharmaceuticals and Other Compounds on Lewis Acid-Base Anchored Zirconia Chiral Stationary Phases

Bingwen Yan, Clayton V. McNeff, Xiaomei Wang, Peter W. Carr - ZirChrom Separations
Feng Gu, Angelos Kyrlidis - Cabot Corporation

Chiral Probe Solutes Used in This Study

Synthesis of Lewis Acid-Base Modified Zirconia CSPs

General method for attaching CSPs to zirconia by Lewis acid-base anchors.

• Three different anchor groups:
 - APPA (aminopropylphosphonic acid)
 - DHNP (Dihydroxynorphedrine)
 - ASPA (Aspartic acid).

• These anchor groups were used to bond:
 - DNP-PG (3,5-dinitrobenzoyl-phenylglycine)
 - DNB-L-Leu (3,5-dinitrobenzoyl-Leucine)
 - DNB-PR (3,5-dinitrobenzoyl-proline).

• NAP-VAL (Naphthyl-valine)
• 1 or 2- NAP-LEU (Naphthyl-leucine)
• NAP (naproxen).

For this probe solute the new silica-based CSPs were better able to separate the enantiomers, whereas in other cases the zirconia-based CSPs were more selective.

List of Zirconia and Silica CSPs Studied

<table>
<thead>
<tr>
<th>Column</th>
<th>CSP</th>
<th>Anchor</th>
<th>Column Length (mm)</th>
<th>Normalized X (mm)</th>
<th>N/meter</th>
<th>Stability Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z1</td>
<td>DNB-Leu</td>
<td>APPA</td>
<td>100</td>
<td>1.17</td>
<td>54800</td>
<td>5</td>
</tr>
<tr>
<td>Z2</td>
<td>DNB-Leu</td>
<td>Aspartic acid</td>
<td>100</td>
<td>1.08</td>
<td>70900</td>
<td>4</td>
</tr>
<tr>
<td>Z3</td>
<td>DNB-Leu</td>
<td>DHNP</td>
<td>100</td>
<td>1.11</td>
<td>49800</td>
<td>3</td>
</tr>
<tr>
<td>Z4</td>
<td>DNB-PG</td>
<td>APPA</td>
<td>100</td>
<td>1.08</td>
<td>53000</td>
<td>3</td>
</tr>
<tr>
<td>Z5</td>
<td>DNB-PG</td>
<td>Aspartic acid</td>
<td>100</td>
<td>1.06</td>
<td>63500</td>
<td>4</td>
</tr>
<tr>
<td>Z6</td>
<td>DNB-PG</td>
<td>DHNP</td>
<td>100</td>
<td>1.14</td>
<td>52400</td>
<td>3</td>
</tr>
<tr>
<td>Z7</td>
<td>DNB-PR</td>
<td>DHNP</td>
<td>100</td>
<td>1.07</td>
<td>59600</td>
<td>3</td>
</tr>
<tr>
<td>Z8</td>
<td>NAP-Leu</td>
<td>APPA</td>
<td>100</td>
<td>1.07</td>
<td>88900</td>
<td>5</td>
</tr>
<tr>
<td>Z9</td>
<td>NAP-Val</td>
<td>DHNP</td>
<td>100</td>
<td>1.06</td>
<td>15800</td>
<td>3</td>
</tr>
<tr>
<td>Z10</td>
<td>Naproxen</td>
<td>APPA</td>
<td>100</td>
<td>1.06</td>
<td>26000</td>
<td>5</td>
</tr>
<tr>
<td>R1</td>
<td>DNB-PG</td>
<td>None</td>
<td>250</td>
<td>1.10</td>
<td>75000</td>
<td>4</td>
</tr>
<tr>
<td>R2</td>
<td>DNB-Leu</td>
<td>None</td>
<td>250</td>
<td>1.14</td>
<td>102000</td>
<td>4</td>
</tr>
</tbody>
</table>

Effect of Anchor on Separations by Zirconia-based CSPs

• The anchor type has relatively little effect on the ability of a given chiral selector to achieve a separation.

K' = K' initial

Effect of Selector on Separations by Zirconia-based CSPs

• There was very little effect between DNB-L-Leu and DNB-L-PG.
• Data shown is for DNB-L-Leu based Zirconia phases

Selective Component

Naphthyl-Leucine

Retention Factor

Retention Factor

Normalised Retention Factor

For this probe solute the new silica-based CSPs were better able to separate the enantiomers, whereas in other cases the zirconia-based CSPs were more selective.

List of Chiral Compounds Studied

- Trifluoranthryl ethanol
- APPA (aminopropylphosphonic acid)
- DHNP (Dihydroxynorphedrine)
- ASPA (Aspartic acid).
- DNP-PG (3,5-dinitrobenzoyl-phenylglycine)
- DNB-L-Leu (3,5-dinitrobenzoyl-Leucine)
- DNB-PR (3,5-dinitrobenzoyl-proline).
- NAP-VAL (Naphthyl-valine)
- NAP (naproxen).
- APPA anchored zirconia based CSPs have better chemical stability compared to the analogous silica based CSPs.
- Zirconia based CSPs have comparable chromatographic performance compared to the commercial silica based CSPs for a wide range of chiral compounds.
- Column to column and batch to batch reproducibility of the zirconia CSPs is very good.

Acknowledgement: NIH SBIR Grant 1R43HL70334-01

Zirconia-based CSP Column Stability

Zirconia-based CSP Column Challenge Conditions

Flushing eluent: 80/20 CH2Cl2/40mM NH4OAc in IPA (3000 column volumes) and 100% MeOH (2000 column volumes).

Flushing eluent: 100% IPA (1000 column volumes), 100%MeOH (3200 column volumes), 49.25/49.25/0.5 column volumes.

Effect of Parent Compound on Separations by Zirconia-based CSPs

Sample Separations for DNB-L-Leu/APPA Zirconia CSP

Batch-to-Batch Reproducibility

Conclusions

• APPA is the best anchor in terms of column stability.
• APPA anchored zirconia based CSPs have better chemical stability compared to the analogous silica based CSPs.
• Zirconia based CSPs have comparable chromatographic performance compared to the commercial silica based CSPs for a wide range of chiral compounds.
• Column to column and batch to batch reproducibility for the zirconia CSPs are very good.