

Fast Screening of Chiral Stationary Phases for Chiral Separations on Zirconia

BINGWEN YAN¹, CLAYTON V. MCNEFF¹,

PETER W. CARR², THOMAS R. HOYE². ¹ZirChrom Separations, Inc. 617 Pierce St., Anoka, MN 55303, ²University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455.

Specialists in High Efficiency, Ultra-Stable Phases for HPLC.

- Why Zirconia?
- Synthetic Approach
- Zirconia-based vs Silica-based CSPs
- Chromatographic Comparison of Different Anchors
- Stability Study
- Example Separations on Zirconia Based CSPs
- Use for Fast Chiral Selector Screening
- Conclusions Zirconia Based CSPs Have Comparable Chromatographic Performance Compared to Silica Based CSPs. Fast Chiral Selector Screening is Possible.

Surface Chemistry of Zirconia

Brönsted Base:
$$Zr \rightarrow H^+ \implies Zr \rightarrow Zr$$

RPO₃²- or Catechol

Lewis Acid: Zr^{4+} : $H_2O + R-COO^- \implies Zr^{4+}$: $OOC-R + H_2O$

New Way to Attach Chiral Selectors to Zirconia Surface

Three Anchors Studied

ZirChrom[®]

1) APPA (Aminopropylphosphonic acid)

3) ASPA (Aspartic acid)

2) DHNP (3,4-Dihydroxynorephedrine)

Anchors should have two function groups: (1) A group anchoring to zirconia surface, and (2) A group bonding to Chiral selector.

Chiral Selectors in This Study

$$O_2N$$
 O_2N
 O_2N
 O_2N
 O_2
 O_2N
 O_2
 O_2N
 O_2

DNB-LEU (3,5-dinitrobenzoylLeucine)

DNB-PG (3,5-dinitrobenzoylphenylglycine)

DNB-PRO (3,5-dinitrobenzoylproline)

NAP-VAL (Naphthoylvaline)

2-NAP-LEU (2-Naphthoyl-leucine),

NAP (naproxen)

Example of Lewis Acid-Base Modified Zirconia CSPs

List of Zirconia and Silica CSPs Studied

Column	CSP	Anchor
Z1	DNB-Leu	APPA
Z2	DNB-Leu	Aspartic acid
Z3	DNB-Leu	DHNP
Z4	DNB-PG	APPA
Z5	DNB-PG	Aspartic acid
Z6	DNB-PG	DHNP
Z7	DNB-Pro	DHNP
Z8	NAP-Leu	APPA
Z 9	NAP-Val	DHNP
Z10	Naproxen	APPA
R1	DNB-PG	
R2	DNB-Leu	

Z1-Z10 zirconia based CSPs, R1, R2-commercialized silica based CSPs

Chromatographic Comparison of Zirconia- and Silica-CSPs

Probe solute: Trifluoroanthryl ethanol

Conclusion: Zirconia based CSPs performed quite well.

Direct Comparison of DNB-L-LEU Zirconia and Silica Based CSPs

- trans-stilbene oxide
- 2 1,1'-bi-2-naphthol
- 3 trifluoranthyl ethanol
- 4 napropamide
- 5 1-naphthyl leucine ester

Much better separations for napropamide and 1-naphthyl leucine ester are obtained on zirconia-based CSPs.

Chromatographic Comparison of Differently Anchored Zirconia-based DNB-L-LEU

Different anchors show different selectivity.

Stability Comparison of Differently Anchored Zirconia-Based DNB-L-LEU

Test solute: trifluoranthryl ethanol. Note that the retention factor ratio is for the less retained isomer.

Stability of Zirconia-based DNB-L-LEU

Retention Factor Stability for S-Napthylleucine ester

Flush Solvent: 49.5/49.5/1 Hexane/IPA/TFA Zirconia-based CSP is a very stable CSP.

Novel Chiral Selector Screening Method

- Attached a CSP to a bare zirconia column in-situ.
- Flush the column to remove unbound CSP.
- Screen chiral target compound.
- Strip off CSP using basic conditions.
- Repeat Cycle until desired resolution is achieved using different CSPs.

Example Attachment and Detachment Cycle

- Pass a solution of 20 mM N-(4-nitrobenzoyl)-L-glutamic acid (CSP) in tetrahydrofuran for 10 minutes at a column temperature of 60°C and a flow rate of 1 mL/min.
- Flushed column with 100% THF for 10 minutes at 2 mL/min at ambient temperature.
- Separate a racemate solution of (±)-2,2,2-trifluoro-1-(9-anthyl)ethanol.
- Strip the CSP by flushing the column with a 50 mM solution of tetramethylammonium hydroxide solution (pH 12) for 20 minutes at 60°C using a flow rate of 1 mL/min.
- Repeat procedure using the same CSP

Proof of Concept

Comparison between the initial and final separation of (\pm) -2,2,2-trifluoro-1-(9-anthyl)ethanol leucine ester during a single CSP screening cycle.

Chromatographic conditions: mobile phase: 99/1 hexane/IPA; flow rate: 1 ml/min; temperature: 30 °C, solute concentration = 1 mg/mL, 5 microliter injection.

Conclusions

- Flexible attachment chemistry.
- APPA is the best anchor in terms of column stability.
- Zirconia based CSPs have comparable chromatographic performance compared to the commercial silica based CSPs for a wide range of chiral compounds.
- Phase II testing will involve *new anchors and different CSPs* with more optimization of screening techniques.
- Acknowledgement: National Institutes of Health Grant (Phase I) R43 HL070334-01.

Thanks very much for listening!

Visit Us at Booth 220

For more information and web access to the free **Buffer Wizard:** www.zirchrom.com