

Introducing ZirChrom[®]-Chiral: A Revolutionary New Suite of Phases for Chiral Separations

Richard Henry, Ph.D.*, Bingwen Yan, Ph.D.*, Clayton McNeff, Ph.D.* and Thomas Hoye, Ph.D**. *ZirChrom Separations, Inc. **University of Minnesota

Technical Bulletin #313

High-performance liquid chromatography has become the dominant method for the analytical and preparative separation of chiral pharmaceuticals. However, no current chiral stationary phase uses zirconia or inorganic oxides other than silica as a substrate. We present here a new technique for the synthesis of zirconia-based chiral phases. This promising new route to preparing chiral stationary phases combines the chemical and mechanical stability of zirconia substrate with flexible, durable, and efficient chiral selectors to create a new novel line of chiral HPLC columns. The work here was funded by the NIH SBIR phase I and II grant program (Grant Number 2R44HL070334-02A2).

Introduction

Zirconia has many attractive properties for HPLC, including spherical particle shape and narrow size distribution. Additionally, it exhibits unsurpassed chemical and mechanical stability. Its surface chemistry is very different from silica gel due to the presence of a high population of strong Lewis acid (Zr^{+4}) sites (Figure 1). The following method exploits these strong Lewis acid sites on the surface in a two step approach to provide a more robust and flexible platform for CSP design when compared to silica gel.

A New Approach to Making Chiral Stationary Phases

The two-step approach utilized in this research involved first attaching an appropriate tethering group, such as pamidronic acid, to the zirconia surface through a Lewis acid-base reaction, and then covalently attaching the desired CSP to the tethering group using amide bond formation chemistry.¹ This general approach allows for the flexible, durable and efficient functionalization of zirconia with a wide variety of chiral selectors. Brush-type CSPs were selected for initial experiments due to their ease of synthesis, wide scope of applicability, and large body of available silica-based separations data for comparison. An illustration of the two-step reaction is shown in *Figure 3* using pamidronic acid as a very strong tethering agent.

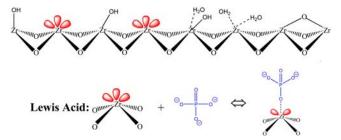
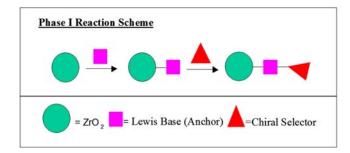
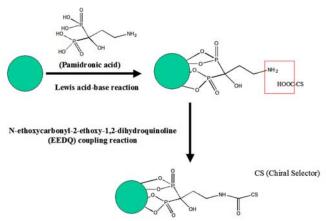




Figure 1: Surface Chemistry of Zirconia particles.

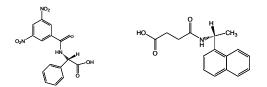


Figure 2: Phase I reaction scheme. A reactive tethering group is attached first, and a chiral selector molecule is attached to the tethering group by an amide bond formation reaction.¹

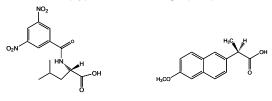


Figure 3: General two-step chemical modification involving the addition of a reactive chelator (pamidronic acid) followed by EEDQ amide bond formation with a chiral carboxylic acid reagent.¹

Durable, efficient CSP columns were successfully prepared in Phase I research by the two-step reaction scheme using the chiral selectors shown in *Figure 4*.

(S)-DNB-L-Phenylglycine (S)-N-[1-(1-naphthyl)ethyl]succinamic acid (NESA)

(S)-DNB-L-Leucine (S)-(+)-6-Methoxy-α-methyl-2-naphthaleneacetic acid

Figure 4: Chiral selector molecules that were evaluated during ZirChrom[®]-Chiral research.

During phase I research, the tethering group was allowed to react with the unmodified zirconia particles, and the chiral selector was covalently attached to the amino-modified the zirconia using N-ethoxycarbonyl-2-ethoxy-1,2dihydroquinoline (EEDQ) coupling reaction that is commonly employed for peptide synthesis.¹ Columns produced in this manner were compared to silica columns having analogous chiral selectors and found to have similar resolving power for the selected probe enantiomers (See ZirChrom Technical Bulletin 314). The chemisorbed chiral selectors on zirconia were found to be stable enough for extended routine use. Most importantly, the selectors could be completely removed by washing with a high pH (>pH 12) aqueous solution and could be easily regenerated.

ZirChrom[®]-Chiral stationary phases are available in packed columns with a growing variety of chiral selectors. Currently, ZirChrom offers five different chiral columns in the ZirChrom[®]-Chiral line:

- ZirChrom[®]-Chiral(S)LEU; Chiral Selector(CS): (S)-3,5-dinitrobenzoyl-leucine, Part# ZRC01
- ZirChrom[®]-Chiral(R)NESA; CS: (R)-N-[1-(1naphthyl)ethyl]succinamic acid, Part# ZRC02
- ZirChrom[®]-Chiral(S)NESA; CS: (S)-N-[1-(1naphthyl)ethyl]succinamic acid, Part# ZRC03
- ZirChrom[®]-Chiral(S)PG; CS: (S)-3,5dinitrobenzoyl-phenylglycine, Part# ZRC04
- ZirChrom[®]-Chiral(R)PG; CS: (R)-3,5dinitrobenzoyl-phenylglycine, Part# ZRC05

Product development is underway for a single, highly stable zirconia column plus a kit of pure CSP coating reagents that will allow users to easily remove and replace chiral selectors by reproducible and simple methods. Chiral selectors with multiple chiral centers, featuring both π -donor and π -acceptor groups, are also under development, as are chiral selectors based on polysaccharides.

Please contact ZirChrom technical support at 1-866-STABLE-1 or <u>support@zirchrom.com</u> for more information regarding this exciting new technology.

References

- (1) Yang A, Gehring A, Li T. J Chromatogr A 2000; 878:165–70.
- (2) American Laboratory, <u>37</u>, No. 21, pp 22-4 (October 2005)

ZirChrom Separations, Inc.

617 Pierce Street, Anoka, MN 55303 1-866-STABLE-1 support@zirchrom.com

Visit <u>www.zirchrom.com</u> for more application notes using ultrastable, high efficiency ZirChrom columns.