

Enantiomer Separations and Fast Chiral Selector Screening

.....on Stable Zirconia-Based Chiral Stationary Phases

Richard A. Henry¹, Clayton V. McNeff¹, Bingwen Yan¹ Yini Wang², Shengxiang Ji², Daniel Nowlan², Thomas R. Hoye² ¹ZirChrom Separations, Inc. 617 Pierce St., Anoka, MN 55303, ²University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455.

Specialists in High Efficiency, Ultra-Stable Phases for HPLC

Zirconia chemistry is dominated by Lewis acid-base reactions

Lewis Acid: Zr^{4+} : $H_2O + RPO_3^{2-} \implies Zr^{4+}$: $RPO_3^{2-} + H_2O$ Other Lewis base examples: PO_4^{3-} , RCO_2^{-} , Catechol

William H. Pirkle, et. al., J. Chromatogr., 316 (1984) 585.
Phase I SBIR Grant (NIH).

Three Anchor Groups Tested

Phase I Anchors

ZirChrom[®]

APPA (Aminopropylphosphonic acid)

ASPA (Aspartic acid)

DHNP (3,4-Dihydroxynorephedrine)

Selected chromatograms of chiral compounds on Zirconia DNB-L-LEU anchored with APPA. Chromatographic conditions: 50x4.6mm, 3µm, 99/1 Hexane/IPA.

Selectivity Comparison of Zirconia and Silica CSPs

Zirconia CSPs (APPA anchor) compare favorably to Silica CSPs with trifluoroanthryl ethanol.

Zirconia CSP (APPA anchor) shows enhanced separation for napropamide and 1-naphthyl leucine ester.

Test solute: trifluoranthryl ethanol (retention factor ratio for less retained isomer)

Interaction Strength of Lewis Bases with Zirconia¹

Hydroxide Phosphate Fluoride Citrate Sulfate Acetate Formate	Small Lewis bases with high electron density and low polarizability interact more strongly with Zr atoms.
Nitrate Chloride	
	Acetate Formate Nitrate Chloride Water

1. J.A. Blackwell and P.W. Carr, "Development of an Eluotropic Series for the Chromatography of Lewis Bases on Zirconium Oxide," Anal. Chem. 64, 863-73 (1992).

A Bidentate Phosphonate Anchorthe Key to Improved Stability¹

Aminopropylphosphonic acid (APPA)

Pamidronic acid (PDA)¹ (Phase II Anchor)

1. Phase II SBIR (NIH).

Selectivity Comparison Between PDA Anchored Zr (S)-Leu and APPA Anchored (S)-Leu

ZirChrom[®]

Selectivity for the two anchors is similar.

Efficiency Comparison Between PDA Anchored Zr (S)-Leu and APPA Anchored (S)-Leu

ZirChrom[®]

Efficiency on PDA anchored Zr (S)-Leu is much better.

Chiral Separations on Zr (S)-NESA (pi-donor phase)

Methanol Effect on Zr (S)-NESA

Sample: (R/S)-N-3,5-dintrobenzoyl-a-amino-2,2dimethyl-4-pentenyl dimethyl phosphonate

Conditions: 89/11 Hexane/IPA, F=1 ml/min, 30 °C.

Conditions: 90 / 2 / 8 (99/1 Hexane/IPA) / MeOH / (70/30 Hexane/IPA), F=1 ml/min, 30 °C

Conditions: 80 / 10 / 10 (99/1 Hexane/IPA) / MeOH / (70/30 Hexane/IPA), F=1 ml/min, 30 °C

Column ID: ZrCSP051605C, Mobile phase: 15/85 ACN/0.01 mM TFA pH 2, Temperature: 30 °C. Injection volume: 5 ul, Wavelength: 254 nm. Probe solutes:(R/S)-3,5-dinitro-N-(1-phenylethyl)benzamide.

Column ID: ZrCSP051605C, Mobile phase: 15/85 ACN/0.01 mM TFA pH 2, Temperature: 30 °C. Injection volume: 5 ul, Wavelength: 254 nm. Probe solutes:(R/S)-3,5-dinitro-N-(1-phenylethyl)benzamide.

Stability of Zr-(S)-DNB-Leu at pH 8

Column ID: ZrCSP032805A, Mobile phase: 15/85 ACN/5 mM ammonium hydrogencarbonate pH 8.0, Temperature: 30 °C. Injection volume: 5 ul, Wavelength: 254 nm. Probe solutes:(R/S)-2, 2, 2-trifluoro-1-(9-anthryl)ethanol

Pre-mixed 98/0.5/1.5 Hexane/TFA/IPA, flow rate=1 ml/min, ambient temperature, 254 nm, Column: ZirChrom PDA-(S)-PG, S/N SPG122005D and ZirChrom PDA-(R)-PG, S/N RPG020806A (100 × 4.6 mm, 3 μm, Running HPLC coated on PHASE110805A, batch#: 52-132). Solute: (1) 1,3,5-Tri-t-butyl-benzene, (2) (S)-2,2,2-Trifluoro-1-(9-anthryl) ethanol , (3) (R)-2,2,2-Trifluoro-1-(9-anthryl) ethanol 5 μl injection.

1- Original column.

ZirChrom[®]

- 2- Column flushed with 15/85 ACN/pH 12 NH₄OH for 10 column volumes, then 10 column volumes of water, 10 column volumes of 1.0 M nitric acid, and 10 column volumes of water.
- 3- Column then flushed with 50 column volumes of 20/80 ACN/ 1 M NaOH, then 10 column volumes of water, 10 column volumes of 1 M nitric acid and 10 column volumes of water.
- 4- Column then flushed with 20/80 ACN/ 1 M NaOH for 50 column volumes at 60 °C, then flushed with 10 column volumes of water, 10 column volumes of 1 M nitric acid, and 10 column volumes of water.

Changing Chiral Selectors

(S)-DNB-L-Phenylglycine (S-PG)

(R)-DNB-L-Phenylglycine (R-PG)

Pre-mixed 98/0.5/1.5 Hexane/TFA/IPA, F=1 ml/min, rm °C, 254 nm, Column: ZirChrom PDA-(S)-PG, S/N SPG122005D and ZirChrom PDA-(R)-PG, S/N RPG020806A (100 × 4.6 mm, 3 µm, Running HPLC coated on PHASE110805A, batch#: 52-132). Solute: 1,3,5-Tri-t-butyl-benzene, (R orS)-2,2,2-Trifluoro-1-(9-anthryl) EtOH. 5 µl injection.

Example 1-Step Attachment and Detachment Cycle

- Pass a solution of 20 mM N-(4-nitrobenzoyl)-L-glutamic acid (CSP) in tetrahydrofuran for 10 minutes at a column temperature of 60°C and a flow rate of 1 mL/min.
- Flush column with 100% THF for 10 minutes at 2 mL/min at ambient temperature.
- Separate a racemic solution of (±)-2,2,2trifluoro-1-(9-anthyl)ethanol.
- Strip the CSP by flushing the column with a 50 mM solution of tetramethylammonium hydroxide solution (pH 12) for 20 minutes at 60°C using a flow rate of 1 mL/min.
- Repeat procedure using the same CSP

N-(4-nitrobenzoyl)-Lglutamic acid

Glutamic Acid Proof of Concept

ZirChrom[®]

Comparison between the initial and final separation of (\pm)-2,2,2-trifluoro-1-(9-anthyl)ethanol leucine ester during a single CSP screening cycle. Chromatographic conditions: mobile phase: 99/1 hexane/IPA; flow rate: 1 ml/min; temperature: 30 °C, solute concentration = 1mg/mL, 5 µL injection.

Conclusions

ZirChrom*

- Five new CSPs were attached to zirconia using PDA: *π*-acceptors: Zr (S)-Leu, Zr (R)-PG, and Zr (S)-PG *π*-donors: Zr (R)-NESA, Zr (S)-NESA
- Zirconia CSPs are reproducible, stable and have comparable chromatographic performance to commercial silica CSPs for range of chiral compounds.
- Methanol in the mobile phase had a positive effect on efficiency, retention, and selectivity under NP conditions.
- Fast user screening of chiral selectors is possible by changing the CSP online using a single, rugged zirconia column; both 2-step and 1-step methods have been developed for ambient and near-ambient conditions.

Acknowledgement: *National Institutes of Health Grant* (Phase II SBIR) 2R44HL070334-02A2.

- Expanded number and type of Zirconia CSPs.
- Zirconia CSP with both pi-donor and pi-acceptor functions.
- Cellulosic Zirconia CSPs.
- Titania CSPs
- Reagents and procedures for fast user screening of various chiral selectors using a single, rugged zirconia column.

Fast Chiral Separation on Nonporous Zirconia DNB-L-Leu

Chiral compounds on nonporous and porous zirconia DNB-L-Leu anchored with APPA. Chromatographic conditions: mobile phase 99/1Hexane/IPA, probe solute: (±)1-naphthyl leucine ester.

Thanks very much for listening!

Request copies of the talk at Booth 2214

www.zirchrom.com for more information and web access to the free Buffer Wizard