

Synthesis of a New Thermally and Chemically Stable Lewis-Acid Deactivated Reversed-Phase Zirconia Stationary Phase for HPLC

Pittcon 2004

Clayton V. McNeff, Bingwen Yan

ZirChrom Separations, Inc.

... For Peak Performance

Outline

- The Goal
- Chromatographic Data
 - *Selectivity* Comparison between Silica C18 and the *new ZirChrom*[®]-*MS*
 - Stability Testing
 - Applications and MS testing
- Conclusion The new ZirChrom[®]-MS column is thermally and pH stable over a wide range and has very different chromatographic selectivity for basic compounds compared to silica C18. The column also performs well under MS-compatible conditions.

To produce a new MS compatible Reversed-Phase Zirconia Stationary Phase that has unique selectivity for basic pharmaceuticals.

resolution.

Mobile phase, 40/60 Acetonitrile/Water; Flow rate, 1.0 ml/min.; Temperature, 30 °C; Detection at 254nm; 5µl Injection volume.

Selectivity Matrix for Nonelectrolytes

Correlation Coefficient	Waters Xterra (RP18)	Luna	PLRP	Gammabond	ZirChrom- PBD	ZirChrom- CARB	DB-C18	Hypercarb	Discovery BIO Wide Pore C18	ZirChrom-EZ	ZirChrom- MS
Waters Xterra (RP18)	1	0.99	0.96	0.98	0.95	0.71	0.94	0.77	0.96	0.96	0.96
Luna		1	0.98	0.99	0.95	0.70	0.94	0.77	0.96	0.96	0.97
PLRP			1	0.98	0.97	0.70	0.95	0.76	0.98	0.98	0.98
Gammabond				1	0.97	0.70	0.95	0.76	0.98	0.98	0.98
ZirChrom-PBD					1	0.69	0.97	0.77	0.98	0.99	0.99
ZirChrom-CARB						1	0.84	0.97	0.68	0.70	0.70
DB-C18							1	0.90	0.95	0.97	0.97
Hypercarb								1	0.76	0.78	0.77
BIO Wide Pore C18									1	0.99	0.99
ZirChrom-EZ										1	0.998
ZirChrom-MS											1

<u>Summary</u>: All CARBON-BASED Columns have different selectivity for nonelectrolytes. All other column retention is very highly correlated.

LC Conditions: Mobile phase, 40/60 ACN/Water; Flow rate, 1.0 ml/min.; Temperature, 30 °C; Injection volume, 5 µl; Detection at 254 nm.

benzyl formamide 2.) benzyl alcohol 3.) phenol 4.) 3-phenyl propanol 5.) p-chlorophenol 6.) acetophenone 7.) benzonitrile
 nitrobenzene 9.) methylbenzoate 10.) anisole 11.) benzene 12.) p-chlorotoluene 13.) p-nitrobenzyl chloride 14.) toluene
 benzophenone 16.) bromobenzene 17.) naphthalene 18.) ethyl benzene 19.) p-xylene 20.) p-dichlorobenzene
 propyl benzene 22.) butyl benzene

Solutes

LC Conditions: Machine-mixed 80/20 ACN/10 mM ammonium acetate pH=6.7 without pH adjustment; Flow rate, 1.0 ml/min.; Injection volume 0.1 ul; Temperature, 35 °C; Detection at 254 nm; Columns, ZirChrom[®]-MS, 50 x 4.6 mm i.d. (3um particles), S/N:MS020204T; Silica-C18 150 x 4.6 mm i.d., (3.5 um particles).

К—К Plot for Basic Pharmaceuticals on ZirChrom[®]-MS and ODS

Basic Compounds are much more retained on ZirChrom®-MS than on Silica C18 and have very different chromatographic selectivity.

LC Conditions: Machine-mixed 80/20 ACN/10 mM ammonium acetate pH=6.7 without pH adjustment; Flow rate, 1.0 ml/min.; Injection volume 0.1 µl; Temperature, 35 °C; Detection at 254 nm; Columns, ZirChrom[®]-MS, 50 x 4.6 mm i.d. (3um particles), S/N:MS020204T; Silica-C18 150 x 4.6 mm i.d., (3.5 um particles).

pH 1 Stability Testing

ZirChrom[®]-MS, S/N: MS0082903X; Mobile phase, 15/85 ACN/pH=1 nitric acid, Temperature: 30 °C; Injection volume: 5 µl; UV, 254 nm; Solutes (see figure).

pH 10 Stability Testing

ZirChrom[®]-MS, S/N: MS0082903X; Mobile phase, 15/85 ACN/pH=10 with tetramethylammonia hydroxide, Temperature: 30 °C; Injection volume: 5 µl; UV, 254 nm; Solutes (see figure).

LC Conditions: Column, ZirChrom[®]-MS, 5 x 2.1 mm i.d. (3 micron particles). Waters Alliance 2795 LC, Flow rate, 0.2mL/min, Mobile phases channel C=10mM ammonium acetate at pH 5, channel D=10mM ammonium acetate at pH 5:acetonitrile (10:90, v/v), Linear gradient 5% D to 100% D in 6 minutes, hold 100% 6-7.4 min, 100 to 5% D 7.4-8.1min, hold 5% D 8.1-13.0 min. Temperature, 35°C. Waters/Micromass ZQ single quadrupole interfaced with the LC using an electrospray ionization (ESI) interface. Positive ion mode (XIC) from full scan acquisitions from m/z 120-700. Solute concentrations = $10\mu g/mL$, $2\mu L$ injections.

HPLC-MS of Beta-Blockers

ZirChrom[®]

HPLC-MS of Quaternary Amine Drugs

ZirChrom[®]

Separation Comparison of Basic Pharmaceuticals on ZirChrom[®]-MS and ODS

Separation of Acidic Pharmaceuticals

LC Conditions: Column, ZirChrom[®]-MS, 50 x 4.6 mm i.d. (MS101003T); Mobile phase, Machine-mixed 40/60 ACN/10 mM ammonium acetate pH=5. Flow rate:1 ml/min, Temperature, 35° C; Injection volume: 5 µl; Solutes eluted in order, (1) Acetaminophen, (2) Ketoprofen, (3) Naproxen, (4) Ibuprofen, (5) Impurity; Detection, 254 nm. Pressure drop, 68 bar.

Conclusions

- The ZirChrom[®]-MS phase is a novel zirconia-based RP column *designed for use with MS*.
- The ZirChrom[®]-MS phase is *Lewis acid site deactivated*.
- The ZirChrom[®]-MS phase has *similar selectivity* and RP behavior to silica C18 *for neutral compounds*.
- ZirChrom[®]-MS *is chemically stable* from pH 1-10.
- ZirChrom[®]-MS *has very different selectivity* than silica C18 *for basic compounds*.

Supplemental Slides

25% ACN, 40 mM above additive, 5 mM NH₄F; 0.6 mL/min; 30 °C; 254 nm.

- 1 Chemisorb Ethylenediamine N,N,N',N'-tetra(methylenephosphonic)acid (EDTPA) to the zirconia surface.
- 2 Quaternize amines on the zirconia surface with allyl iodide.
- **3** Coat polybutadiene (PBD) on the chelator-modified zirconia surface and crosslink PBD with allyl group and PBD itself using dicumyl peroxide as initiator.

Reversed-Phase Characteristics

1.2 Toluene Biphenyl 1.0 Phenanthrene 0.8 0.6 0.4 0.2 0.0 -0.2 -0.4 0.4 0.45 0.5 0.55 0.6 0.65 0.7

$$\log \mathbf{k'_{RP}} = \log \mathbf{k_w} - \mathbf{S}\phi$$

		Toluene	Biphenyl	Phenanthrene		
	logkw	2.06	2.67	2.75		
	S*	3.41	3.86	3.71		
	R ²	0.980	0.990	0.990		

* Typical value for S for butylbenzene on silica C18 is 3.4 and intercept of 3.0.
(Jianhong Zhao and Peter W. Carr, Anal Chem. Vol. 71 (1999) 5217-5224.)

ZirChrom[®]-MS has very similar RP behavior to Silica C18.

LC Conditions: Mobile phase, indicated composition of ACN/Water; Flow rate, 2.0 ml/min.; Temperature, 35 °C; Injection volume, 5 μ l; Detection at 254 nm; Column, 50 mm x 4.6 mm i.d. ZirChrom[®]-MS.