High Temperature Ultra Fast Liquid Chromatography

Peter W. Carr, Jon Thompson, Dwight Stoll, and Adam Schallinger

Conclusions

1. To do <u>fast</u> LC, use a WEAK eluent and a HOT column.

2. Use a highly retentive column so that you can work at lowest possible viscosity!

A.

Fast Separation of Antihistamines at 80 °C

LC Conditions: (A) Mobile Phase, 29/71 ACN/50mM Tetramethylammonium hydroxide; Injection volume, 0.5 ul; 254 nm detection; 100 x 4.6 ZirChrom-PBD (B) same as A, except Mobile Phase, 26.5/73.5 ACN/50mM Tetramethylammonium hydroxide, pH 12.2

Faster Separation at 140 °C

Mobile Phase, 29/71 ACN/50mM Tetramethylammonium hydroxide, pH 12.2; Injection volume, 0.5 µl; 254 nm detection; Solutes: 1=Doxylamine, 2=Methapyrilene, 3=Chlorpheniramine, 4=Triprolidine, 5=Meclizine; Column, 100 mm x 4.6 mm i.d. ZirChrom[®]-PBD

Effect of Temperature on Theoretical Analysis Time at Constant Pressure, Retention, and Plate Count*

"High-Performance Liquid Chromatography at Elevated Temperatures: Examination of Condition for the Rapid Separation of Large Molecules," R. D. Antia and Cs. Horvath, *J. Chromatogr.*, 435, 1-15 (1988).

Relative Viscosity vs. Temperature

How to Prevent Boiling

Requirements for High Temperature LC

Stationary Phase Stability

Thermal Mismatch Broadening On-Column Analyte Instability **Peak Shapes Observed for Various Mobile-Phase Feed Temperatures***

$$\sigma_{obs}^2 = \sigma_{column}^2 + \sigma_{extra-columnn}^2 + \sigma_{thermal-mismatch}^2$$

LC conditions: Column at 30 °C; 6.2 mm IDx8cm;

3μ Zorbax ODS; at 5 mL/min; 50/50 (v/v) ACN,H₂O; nitrobenzene

*H. Poppe and J.C. Kraak, J. Chromatogr., 282, 399-412 (1983).

Comparison of the Effect of Incomplete Thermal Equilibration on Column Performance

2.1 mm ID

LC conditions: 2.1 x 5 cm, C-18 INERT, 55 % ACN, 5 cm preheater, 60 °C 4.6 x 5 cm, C-18 INERT, 60% ACN, 5 cm preheater, 60 °C.

<u>Peaks</u>: 1. toluene, 2. ethylbenzene, 3. propylbenzene, 4. butylbenzene

Theoretical Effect of Temperature on Column Dynamics 10 25 °C 75 °C 8 125 °C H $*10^{-5}$ (cm) 6 175 °C 4 2 0 20 40 60 80 0 100

u*100 (cm/s)

<u>Conditions</u>: The particle diameter is 3 µm and the reduced linear velocity does not change with temperature $((D_{m,25} \circ_C = 6*10^{-7} \text{ cm}^2/\text{s}))$. The linear velocity (u) is increased and the reduced plate height is calculated from a modified Knox equation (A = 1.5, B = 0.8, C = 0.3, D = 0.04) at each velocity and temperature. Fast desorption kinetics are assumed (E_a = 20 kJ/mol, k_o = 1*10¹³s).

Citation: R. D. Antia and Cs. Horvath, J. Chromatogr., 435, 1-15 (1988).

A Totally Impractical High Temperature Ultrafast Liquid Chromatography (HTUFLC) System

Effect of Temperature on Column Efficiency in HTUFLC

Conclusion: Resistance to mass transfer is greatly reduced at elevated column temperature. Δ , 25 °C (decanophenone, k'=12.23), ∇ , 80 °C (dodecanophenone, k'=7.39), \Box , 120 °C (tetradecanophenone, k'=12.32).

Effect of Temperature on Column Dynamics

Experimental Conditions ^a		van Deemter Equation Coefficients				
T(°C)	Mobile Phase (% ACN (v/v))	D _m x10 ⁴ (cm ² /s) ^b	A x 10 ³ cm	B x 10 ⁴ (cm ² /s)	C x 10 ³ (s)	u _{opt} (cm/s)
25 80 120 150	40 40 30 25	0.08 0.15 0.25 0.36	1.1±0.04 0.90±0.05 0.91±0.03 1.0±0.05	0.18±0.03 0.6±0.09 1.2±0.08 1.3±0.08	1.4±0.06 0.80±0.03 0.44±0.01 0.31±0.03	0.1 0.3 0.6 0.7

^a Solutes: alkylphenones

^b Estmated solute diffusion coefficient in the indicated mobile phase at temperature of the calculation based on modified Wilke-Chang equation.

A Totally Practical Heating System

Back Pressure Regulator 10 - 30 Bar

U.S. Patent Issued Systec/MetalOx

References

B. Yan, J. Zhao, J.S. Brown, J. Blackwell, and P.W. Carr, "High Temperature Ultrafast Liquid Chromatography," *Anal. Chem.* **72**, 1253-62 (2000).

J.D. Thompson, J.S. Brown, and P.W. Carr, "Dependence of <u>Thermal Mismatch Broadening</u> on Column Diameter in High-Speed Liquid Chromatography at Elevated Temperatures," *Anal. Chem.***73**, 3340-7 (2001).

J.D. Thompson and P.W. Carr, "A Study of the Critical Criteria for <u>Analyte Stability</u> in High-Temperature Liquid Chromatography," *Anal. Chem.* **74**, 1017-23 (2002).

J.D. Thompson and P.W. Carr, "High-Speed Liquid Chromatography by <u>Simultaneous</u> <u>Optimization of Temperature and Eluent Composition</u>," *Anal. Chem.* **74,** 4150-9 (2002).

Theory of High Speed HPLC

Rearrangement to Obtain the Guiochon Equation

Fundamental Equation # 1

Fundamental Equation # 2

Fundamental Equation # 3

Guiochon Equation

Knox Equation

$$L = NH = Nhd p$$
$$u = \frac{\nu D_m}{d_p}$$
$$t_R = \frac{L}{u}(1+k')$$
$$\frac{t_R}{N} = \frac{(1+k')}{D_m} \frac{h}{v} d_p^2$$
$$h = Av^{1/3} + \frac{B}{v} + Cv$$

G. Guiochon, Anal. Chem., 1980, 52, 2002-2008

Limit 1: "C term"

Limit 2: "A term"

Dependence of t/N on Velocity in the Limit of Exponent of v^x

Critical Exponents

v	d_p^x	L ^x	ΔP^{x}	η ^x	T ^x
0	-1	1	-1	1	0
1/2	1/2	1/2	-0.5	1	-0.5
1/3	0	2/3	- 2/3	1	- 1/3
1	2	0	0	1	-1

Relative Viscosity vs. Temperature

Limit 3: Resolution

Rearrangement of Darcy's Law

Knox-Saleem Equation

Retention Time

General Resolution Equation

Result

$$t_R = \frac{256R^4h^2\eta\Phi}{\Delta P} \left(\frac{\alpha}{\alpha-1}\right)^4 \frac{(1+k')^6}{k'^4}$$

Dependence of t/N on Optimization Parameters

	d_p^x	L ^x	ΔP^{x}	η ^x
C Limit	2	0	0	1
A limit $(v^{1/3})$	0	2/3	- 2/3	1
Resolution Limit	0	0	-1	1

Relative Viscosity vs. Temperature

Effect of Composition on Viscosity

Effect of ϕ , & T on k'

How Should the Separation Be Done?

The same k' can be achieved by use of :

- a. low temperature and organic rich eluent. OR
- b. high temperature and organic poor eluent.

Which allows the faster separation?

Effect of ϕ and T (at k' = 5) on η				
k' (,T)	% ACN (v/v)	Т (°С)	η(cP) (φ,Τ)	η (T)/η (25 °C)
5	69	25	0.55	1
5	59	100	0.29	0.53
5	52	125	0.20	0.36
5	45	200	0.14	0.25

<u>Conditions:</u> k' based on butyl benzene on a C_{18} Zorbax column.

Conclusions

1. To do <u>fast</u> LC, use a WEAK eluent and a HOT column.

2. Use a highly retentive column so that you can work at lowest possible viscosity!

The Importance of Speed in Comprehensive Two-Dimensional HPLC

For comprehensive 2DLC, the speed of the **second dimension separation** is the **rate limiting step** in completing the entire 2D chromatogram.

Each first dimension peak must be chromatographed **3-4 times** by the second dimension column.

$$t_{rtotal} = \frac{\sqrt{N_1} L_{c2} (k'_{\max 1} + 1) (k'_{\max 2} + 1)}{U_2}$$

	Typical	Fast
1st Dim. k' _{max}	10	10
2nd Dim. k' _{max}	5	5
N ₁ (Plates/column)	10000	10000
L _{c,2} (cm)	3.3	3.3
u ₂ (cm/s)	0.5	5.0
Total Analysis Time (Hrs)	12	1

Potential Approaches to Improving the Speed of HPLC

Approach	Advantage	Disadvantage
Shorter Columns	Works with most equipment, stationary phases	Low plate count and resolution
Monolithic Columns	Low backpressure	Narrow-bore columns are not available, high sovent useage
Ultra-High Pressure LC	High plate counts with small particles	Specialized equipment needed, losses in N at high velocity
High Temperature LC	Low backpressure, high efficiency at high velocity	Requires adequate heating, stable phases, stable analytes.

High temperature LC is the only approach that allows a significant fraction of the column plate count to be retained as the column linear velocity is increased to values that allow *much faster HPLC*

Schematic of a Complete LC × UFHTLC System

LC × UFHTLC Separation of Ten Triazine Herbicides

1st Dimension Conditions: Column, 50 mm x 2.1 mm i.d. PBD-ZrO₂; Mobile phase, 20/80 ACN/Water; Flow rate, 0.08 ml/min.; Injection volume, 20 μl; Temperature, 40 °C

 2^{nd} Dimension Conditions: Column, 50 mm x 2.1 mm i.d. PBD-C-ZrO₂; Mobile phase, 20/80 ACN/Water; Flow rate, 7.0 ml/min.; Injection volume, 15 µl; Temperature, 150 °C; 1st dimension sampling frequency, 0.1 Hz

Total LC \times UFHTLC peak capacity = 185

Using a single column, it would take a 2.5 meter column and 44 hours to generate the same peak capacity

Thanks!

- Ben Yan (ZirChrom).
- NIH.
- Carl Sims and Systec, Inc.
- ZirChrom Separations, Inc.

High Throughput Gradient Elution

17 Gradients/Hour. Peak capacity is 70! This speed cannot be done at ambient within the gradient space! Carl Sims—Systec.

Second Dimension Chromatograms

