

Synthesis of A New Class of Pirkle-Type Chiral Stationary Phases on Zirconia

BINGWEN YAN¹, CLAYTON V. MCNEFF¹, PETER W. CARR², THOMAS R. HOYE². ¹ZirChrom Separations, Inc. 617 Pierce St., Anoka, MN 55303, ²University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455.

Specialists in High Efficiency, Ultra-Stable Phases for HPLC.

Pittcon 2004

ZirChrom®

Goal-To Make Zirconia Based Chiral Stationary Phases (CSPs)

- Why Zirconia?
- General Synthetic Method
- Comparison of Zirconia-based CSPs with Commercial Silica-based CSPs
- Chromatographic Comparison of Different Anchors
- Stability Study of Zirconia-based CSPs
- Examples of Enantiomer Separations on Zirconia Based CSPs
- Conclusions –Zirconia Based CSPs Have Comparable Chromatographic Performance Compared to Silica Based CSPs. Fast Chiral Separations Can Be Achieved on Nonporous Zirconia Based CSPs.

New Way to Attach Chiral Selectors to Zirconia Surface

ASPA (Aspartic acid)

Anchors should have two function groups: (1) A group anchoring to zirconia surface, and (2) A group bonding to Chiral selector.

OH

ΌH

List of Zirconia and Silica CSPs Studied

ZirChrom

Column	CSP	Anchor
Z1	DNB-Leu	APPA
Z2	DNB-Leu	Aspartic acid
Z3	DNB-Leu	DHNP
Z4	DNB-PG	ΑΡΡΑ
Z5	DNB-PG	Aspartic acid
Z6	DNB-PG	DHNP
Z7	DNB-Pro	DHNP
Z8	NAP-Leu	ΑΡΡΑ
Z9	NAP-Val	DHNP
Z10	Naproxen	ΑΡΡΑ
R1	DNB-PG	
R2	DNB-Leu	

Z1-Z10 zirconia based CSPs, R1, R2-commercialized silica based CSPs

Chromatographic Comparison of Zirconia- and Silica-CSPs

Probe solute: Trifluoroanthryl ethanol Conclusion: Zirconia based CSPs performed quite well.

Much better separations for napropamide and 1-naphthyl leucine ester are obtained on zirconia-based CSPs.

Stability of Zirconia-based DNB-L-LEU

Retention Factor Stability for S-Napthylleucine ester

Flush Solvent: 49.5/49.5/1 Hexane/IPA/TFA Zirconia-based CSP is a very stable CSP.

Chromatographic Comparison of Differently Anchored Zirconiabased DNB-L-LEU

Different anchors show different selectivity.

Stability Comparison of Differently Anchored Zirconia-Based DNB-L-LEU

Column Volumes

Column Volumes

Test solute: trifluoranthryl ethanol. Note that the retention factor ratio is for the less retained isomer.

Enantiomer Separations on DNB-L-LEU Modified Zirconia Phase Anchored via APPA

Selected Chromatograms of Chiral Compounds on Zirconia Based DNB-L-LEU Anchored with APPA.

Fast Chiral Separation on Nonporous Zirconia-based DNB-L-Leu

Chiral compounds on nonporous and porous zirconia-based DNB-L-Leu anchored with APPA. Chromatographic conditions: mobile phase 99/1Hexane/IPA, probe solute: (±)1-naphthyl leucine ester.

Conclusions

- Flexible attachment chemistry.
- APPA is the best anchor in terms of column stability.
- Zirconia based CSPs have comparable chromatographic performance compared to the commercial silica based CSPs for a wide range of chiral compounds.
- Fast Separation can be achieved on nonporous zirconia based CSPs.
- Acknowledgement: National Institutes of Health Grant # 1 R43 HL070334-01.