# Fast, Comprehensive Two-Dimensional HPLC For the Analysis of Complex Samples

**Dwight R. Stoll and Peter W. Carr** 

#### Minnesota Chromatography Forum March 19, 2005



### **LC × UFHTLC Separation of Ten Triazine Herbicides**



**1<sup>st</sup> Dimension Conditions**: Column, 50 mm x 2.1 mm i.d. PBD-ZrO<sub>2</sub>; Mobile phase, **20/80 ACN/Water**; Flow rate, 0.08 ml/min.; Injection volume, 20 μl; Temperature, 40 °C

**2<sup>nd</sup> Dimension Conditions**: Column, 50 mm x 2.1 mm i.d. PBD-C-ZrO<sub>2</sub>; Mobile phase, **20/80 ACN/Water**; Flow rate, 7.0 ml/min.; Injection volume, 15 μl; Temperature, **150** °**C**; 1<sup>st</sup> dimension sampling frequency, 0.1 Hz

This was a reasonable place to start work on fast 2DLC, but isocratic separations are only good for relatively simple samples

### Fast 2DLC (Gradient x Gradient) Separation of Corn Seedling Extract



# Outline

- 1. Review of critical requirements for success in 2D separations
- 2. Review of approaches to improve the speed of 2DLC
- 3. Construction and evaluation of a 2DLC instrument using High Temperature and Ultra-Fast Gradient Elution HPLC in the second dimension separation  $(LC \times UFHTLC)$
- 4. Fast 2DLC separations of extracts of wild-type and *orp* mutant corn seedlings

**Conclusion** – We are currently capable of 2DLC separations on the 30minute timescale where gradient elution is used in both dimensions for the analysis of very complex samples; under these conditions a peak capacity production rate of approximately 1 peak/second has been achieved.

### **Requirements and Advantages of Two-Dimensional HPLC**

Two conditions must be met for the technique to be considered "comprehensive & two-dimensional"

- 1. Orthogonality of separation mechanisms This is a requirement imposed on the stationary phase chemistry
- 2. Separation gained in one dimension cannot be diminished by separation in the other dimension



Only when these two conditions are satisfied is the maximum total peak capacity of the two-dimensional system realized as:

 $PC_{2D} = PC_1 \times PC_2$ 

Murphy, R. E.; M. R. Schure; J. P. Foley Anal. Chem., 1998; Vol. 70, pp 1585-1594 Giddings, J. C. Multidimensional Chromatography: Techniques and Applications; Marcel Dekker: New York, 1990

# **Approaches to Improving the Speed of HPLC**

| Approach                                    | Advantages                                               | Disadvantages                                                                              |
|---------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Shorter Columns                             | Works with most<br>equipment, stationary<br>phases       | Low plate count and resolution                                                             |
| Monolithic Columns                          | Low backpressure                                         | Narrow-bore columns<br>not available, high<br>solvent usage, speed<br>limited by flow rate |
| Ultra-High Pressure LC                      | High plate counts with small particles                   | Specialized equipment<br>needed, losses in N at<br>high velocity                           |
| Shorter Columns with Nonporous<br>Particles | Works with most<br>equipment, stationary<br>phases       | Low Sample Loading<br>Capacity                                                             |
| Shorter Columns with < 3 um                 | High plate counts with<br>small particles                | Specialized equipment needed                                                               |
| High Temperature LC                         | Low backpressure, high<br>efficiency at high<br>velocity | Requires special heating,<br>stable phases, stable<br>analytes.                            |

## **Comparison of Peak Capacity Production**

| Tochniquo              | Peak Capacity                    | Analysis Time                        | Peak Capacity                       |
|------------------------|----------------------------------|--------------------------------------|-------------------------------------|
| rechnique              | Limit (n <sub>c</sub> )          | (hr)                                 | Production (n <sub>c</sub> /hr)     |
| 2D-Gel Electrophoresis | 10 <sup>3</sup> -10 <sup>4</sup> | 10 <sup>2</sup>                      | 10 <sup>1</sup> -10 <sup>2</sup>    |
| HPLC                   | 10 <sup>2</sup> -10 <sup>3</sup> | 10 <sup>0</sup> -10 <sup>1</sup>     | 10 <sup>1</sup> -10 <sup>2</sup>    |
| LC x LC                | 10 <sup>3</sup> -10 <sup>4</sup> | <b>10<sup>1</sup>-10<sup>2</sup></b> | 10 <sup>2</sup> -10 <sup>3</sup>    |
| LC x UFHTLC            | 10 <sup>3</sup> -10 <sup>4</sup> | 10 <sup>0</sup> -10 <sup>1</sup> ??  | 10 <sup>3</sup> -10 <sup>4</sup> ?? |

Hille, J. M.; Freed, A. L.; Watzig, H. Electrophoresis 2001, 22, 4035-4052

**Goal**: To increase the speed of peak capacity production in HPLC such that 10-20-fold increases in peak capacity can be achieved for separations under 60 minutes

## Schematic of a Complete LC × UFHTLC System Capable of Gradient Elution in Both Dimensions



## 21 Second, Reproducible One-Dimensional Gradient Separations

Gradient time  $(t_g) = 16$  sec. Re-equilibration time  $(t_{re-eq}) = 5$  sec. Cycle time  $(t_c) = 21$  sec. Solutes: Uracil, Nitroalkane homologs (2-5)

Column – 50 mm x 2.1 mm i.d. SB300-C<sub>18</sub> Flow rate – 3.0 ml/min. Temperature – 100 °C Injection volume – 30  $\mu$ l Gradient Conditions A – 0.1% Trifluroacetic acid (TFA) in water B – 0.1% Trifluroacetic acid (TFA) inACN Gradient from 0-100% B in 21 seconds



#### Indole-3-acetic acid (IAA) is the Primary Auxin in Plants

- Active in submicrogram levels in plants
- Associated with a variety of physiological growth and development processes
  - -Cell division and expansion
  - -Vascular tissue differentiation
  - -Apical dominance
  - -Tropisms
  - -Flowering
  - -Root initiation
  - -Fruit ripening
  - -Abscission of leaves and fruit

CH<sub>2</sub>-COOH

```
Indole-3-acetic acid
```

Biosynthetic pathway is redundant, highly regulated, and still not fully elucidated

#### **Indolic Metabolite Structures of Interest in this Work**



#### **Experimental 2DLC Conditions**

#### 1<sup>st</sup> Dimension

Column – 100 mm x 2.1 mm i.d. Discovery HS-F5 (5 micron)

Eluent A – 20mM sodium phosphate, 20mM sodium perchlorate, pH 5.7 Eluent B – Acetonitrile

Eluent B - Acetonitrile

Injection volume  $-10 \ \mu l$ 

Temperature – 40 °C

Flow rate -0.10 ml/min.

#### 2<sup>nd</sup> Dimension

Column – 50 mm x 2.1 mm i.d. ZirChrom-CARB (8% C, 3.0 micron)

| Eluent A – 20mM perchloric acid in water | Tim |
|------------------------------------------|-----|
| Eluent B – Acetonitrile                  |     |
| Injection volume – 34 µl                 |     |
| Temperature – 110 °C                     |     |
|                                          |     |

Flow rate – 3.0 ml/min.

UV-DAD Detection from 200-350 nm

| Time (sec.) | %B |
|-------------|----|
| 0.0         | 0  |
| 17.4        | 70 |
| 18.0        | 0  |
| 21.0        | 0  |

| Time (min.) | %B |
|-------------|----|
| 0.00        | 0  |
| 20.00       | 40 |
| 22.00       | 40 |
| 23.00       | 70 |
| 23.01       | 0  |
| 30.00       | 0  |



#### **2DLC Separation of 26 Indolic Metabolite Standards**

- The first and second dimension retention times are poorly correlated for this set of analytes
- Most of the indolic metabolites are well separated, although there are also some that are highly overlapped



#### 2DLC Separation of *orp* Mutant Extract with Detection at 220 nm



#### **Peak Capacity and Peak Capacity Production Rate**

For the maize extract separations,

$$PC_{2D} = PC_1 \times PC_2$$

$$PC_1 = \frac{t_{g,1}}{t_{s,1}}$$
  $PC_2 = \frac{t_{g,2}}{W_2}$ 

$$PC_{2D} = 1330$$
,  $PC_{2D}/t = 3070/hr$ , 1 unit of  
peak capacity/second

#### Second Dimension Separations are Rich with Information



### **Increased Peak Capacity Begins to Mitigate the Dynamic Range Problem that Plagues Bioanalytical Separations**



# Conclusions

- 1. Ultra-fast reversed-phase gradients with excellent **repeatability of retention time** (≤0.003 min.) are possible.
- 2. The Murphy, Foley, Schure sampling rate criteria almost met--each peak shows up in 2-3 consecutive chromatograms.
- 3. It is absolutely essential to use the **right pair of columns**. The 2<sup>nd</sup> column must be very retentive, have different selectivity from 1<sup>st</sup> column and must be compatible with the sample's inherent dimensionality.
- A peak capacity of 1330 and peak capacity production rate of 3070/hr (~1 peak/second) has been achieved.
- 5. More than **200 peaks** are seen in corn seedling extracts.
- 6. We have shown that high peak capacity strongly mitigates the dynamic concentration range problem characteristic of biological samples.
- 7. Chemometric methods will be critical to both quantitative and qualitative implementation of 2DLC.

Prof. Jerry Cohen (Department of Horticulture, U of M) Agilent Technologies (SB-C<sub>18</sub> column) Supelco (Discovery HS-F5 column) ZirChrom Separations (Zirconia column) Systec, Inc. National Institutes of Health (Grant # 5R01GM054585-09) National Institute of Justice