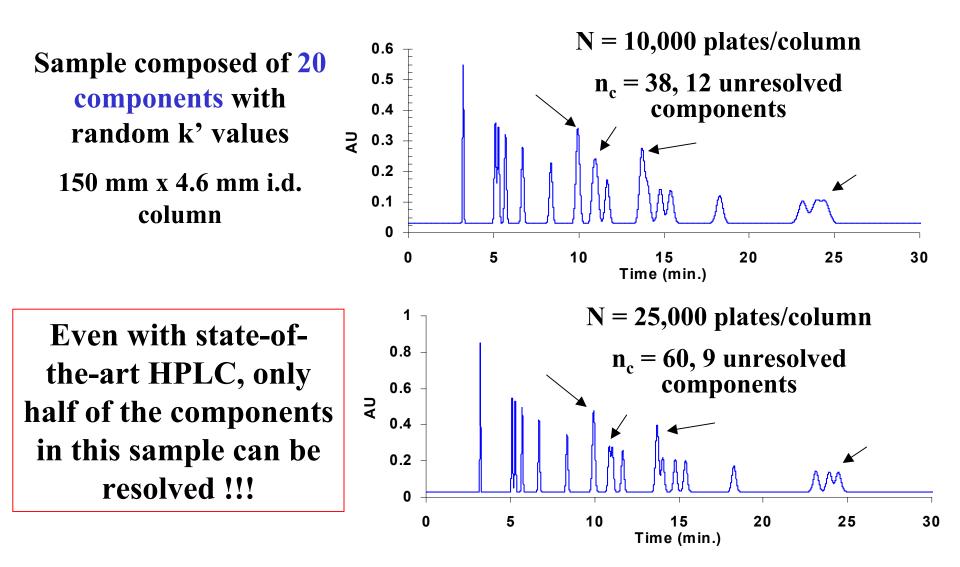
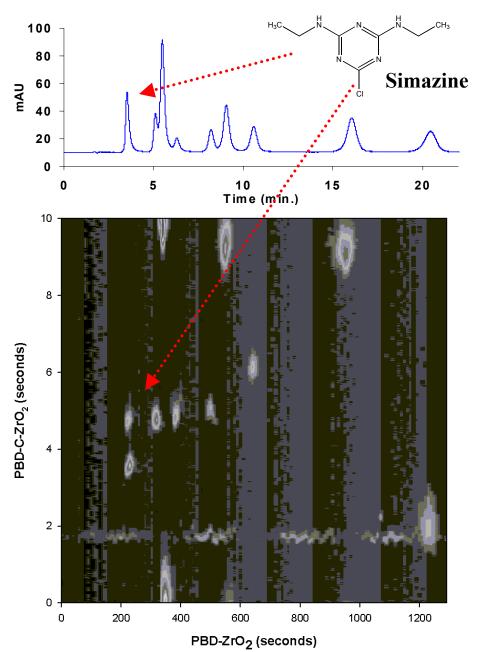

High Speed 2D-HPLC Through the Use of Ultra-Fast High Temperature HPLC as the Second Dimension


Minnesota Chromatography Forum Spring Symposium

Dwight Stoll and Peter W. Carr


Department of Chemistry University of Minnesota

A Common Problem in HPLC

LC × UFHTLC Separation of Ten Triazine Herbicides

1st Dimension Conditions: Column, 50 mm x 2.1 mm i.d. PBD-ZrO₂; Mobile phase, 20/80 ACN/Water; Flow rate, 0.08 ml/min.; Injection volume, 20 μl; Temperature, 40 °C

 2^{nd} Dimension Conditions: Column, 50 mm x 2.1 mm i.d. PBD-C-ZrO₂; Mobile phase, 20/80 ACN/Water; Flow rate, 7.0 ml/min.; Injection volume, 15 µl; Temperature, 150 °C; 1st dimension sampling frequency, 0.1 Hz

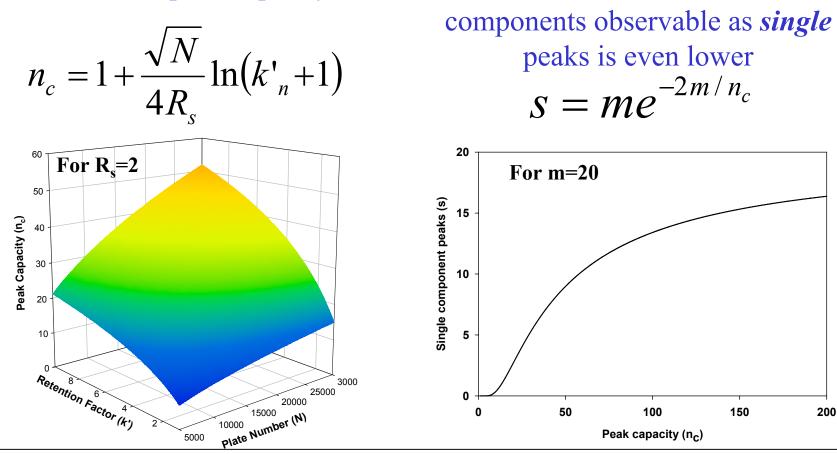
Total LC \times UFHTLC peak capacity = 185

Using a single column, it would take a 2.5 meter long column and 44 hours to generate the same peak capacity

Outline

• Background

- Limitations of one-dimensional HPLC (1DLC)
- Requirements and advantages in two-dimensional HPLC (2DLC)
- Improving 2DLC by applying UFHTLC (Ultra Fast High Temperature Liquid Chromatography) to the second dimension separation


• Results

- Assembly of a preliminary LC × UFHTLC instrument
- Fast 1DLC separations using narrow-bore columns
- A preliminary, fast LC × UFHTLC separation
- **Conclusion** Implementation of UFHTLC in the second dimension separation of 2DLC will *increase* both the *practical limit* and the *rate* of peak capacity production in HPLC.

Limitations of One-Dimensional HPLC

#1b - The number of

#1a - Low peak capacity

Comprehensive two-dimensional HPLC is the most efficient way to greatly increase the peak capacity of HPLC

Giddings, J. C. Multidimensional Chromatography: Techniques and Applications; Marcel Dekker: New York, 1990

Requirements and Advantages in Two-Dimensional HPLC

Two conditions must be met for the technique to be considered "two-dimensional"

- 1. Orthogonality of separation mechanisms This is a requirement imposed on the stationary phase chemistry
- 2. Separation gained in one dimension cannot be diminished by separation in the other dimension

If these two conditions are satisfied, the maximum total peak capacity of the twodimensional system is:

$$n_{cTotal} = n_{c1} \times n_{c2}$$

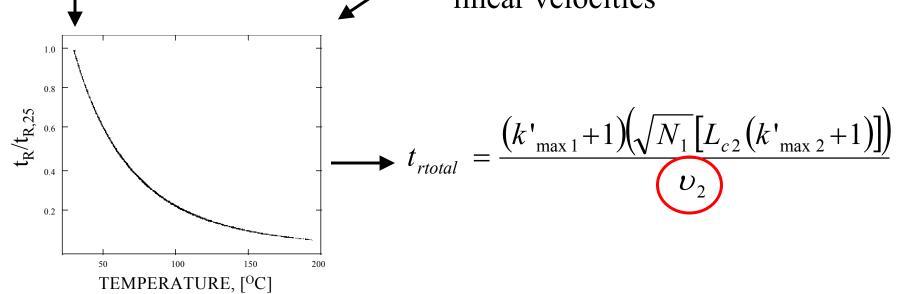
Murphy, R. E.; M. R. Schure; J. P. Foley Anal. Chem., 1998; Vol. 70, pp 1585-1594

Giddings, J. C. Multidimensional Chromatography: Techniques and Applications; Marcel Dekker: New York, 1990

Comparison of Peak Capacity Production

Technique	Peak Capacity Limit (n _c)	Analysis Time (hr)	Peak Capacity Production (n _c /hr)
Capillary GC	10 ³	10 ⁰ -10 ¹	10 ²
GC x GC	10 ⁴ -10 ⁵	10 ¹	10 ³ -10 ⁴
HPLC	10 ² -10 ³	10 ⁰ -10 ¹	10 ¹ -10 ²
LC x LC	10 ³ -10 ⁴	10 ¹ -10 ²	10 ²
LC x UFHTLC	10 ³ -10 ⁴	10 ⁰ -10 ¹ ??	10 ³ ??
2D-Gel Electrophoresis	10 ³ -10 ⁴	10 ²	10 ¹ -10 ²

Goal: To increase the speed of peak capacity production in HPLC such that 10-20-fold increases in peak capacity can be achieved for separations under 60 minutes


Potential Approaches to Improving the Speed of HPLC

Approach	Advantage	Disadvantage		
Shorter Columns	Works with most equipment, stationary phases	Low plate count and resolution		
Monolithic Columns	Low backpressure	Narrow-bore columns are not available, high sovent useage		
Ultra-High Pressure LC	High plate counts with small particles	Specialized equipment needed, losses in N at high velocity		
High Temperature LC	Low backpressure, high efficiency at high velocity	Requires adequate heating, stable phases, stable analytes.		

High temperature LC is the only approach that allows a significant fraction of the column plate count to be retained as the column linear velocity is increased to values that allow *significantly faster HPLC*

Improving Two-Dimensional HPLC by Applying UFHTLC to the Second Dimension Separation

#1 – High column temperatures dramatically lower eluent vicosities allowing higher column linear velocities #2 – High column temperatures
dramatically increase analyte
diffusivity in the eluent producing
more efficient separations at high
linear velocities

Antia, F. D.; C. Horvath In J. Chromatogr., 1988; Vol. 435, pp 1-15

Outline

• Background

- Limitations of one-dimensional HPLC (1DLC)
- Requirements and advantages in two-dimensional HPLC (2DLC)
- Improving 2DLC by applying UFHTLC (Ultra Fast High Temperature Liquid Chromatography) to the second dimension separation

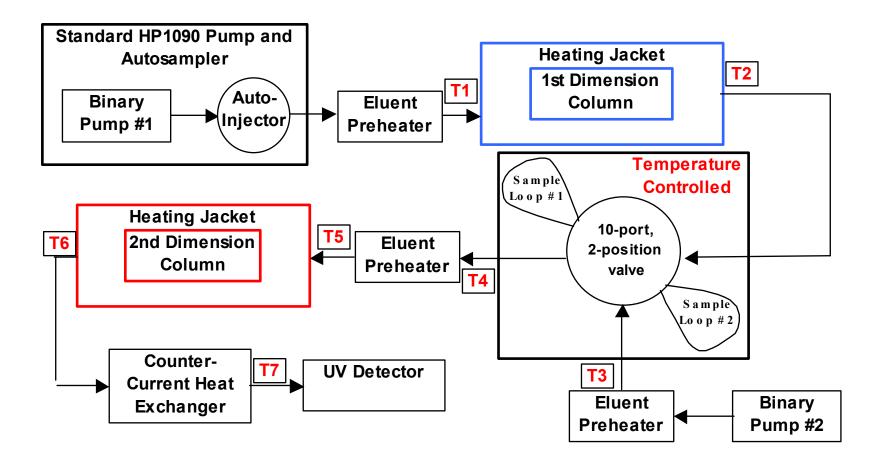
• Results

- Assembly of a preliminary $LC \times UFHTLC$ instrument
- Fast 1DLC separations using narrow-bore columns
- A preliminary, fast LC \times UFHTLC separation
- **Conclusion** Implementation of UFHTLC in the second dimension separation of 2DLC will *increase* both the *practical limit* and the *rate* of peak capacity production in HPLC.

Developing Instrumentation: Guidelines for System Parameters in LC × UFHTLC

Target second dimension peak capacity = 20 (within 10 seconds)

Theoretical work by Thompson suggests the 2.1 mm column diameter is most suitable for UFHTLC

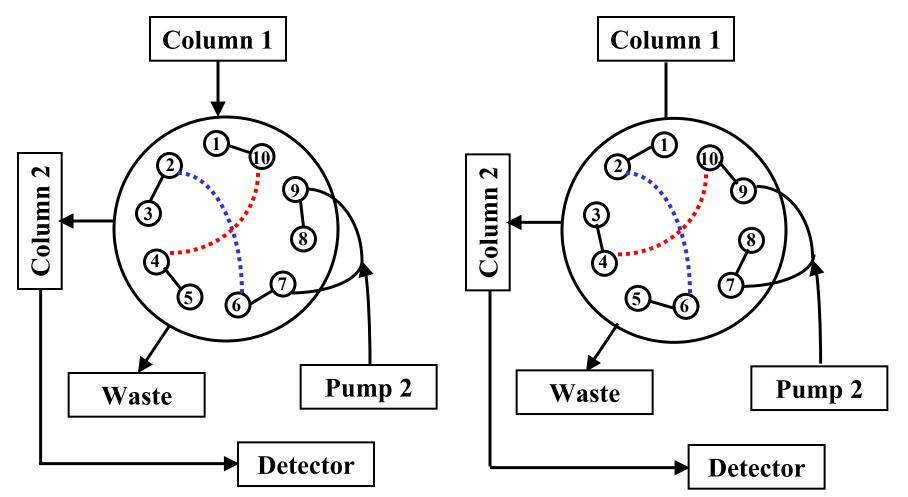

	Flow rate required (ml/min.)				
	Column Inner Diameter (mm)				
u _e (cm/s)	1.0	2.1	4.6		
0.1	0.02	0.08	0.38		
1.0	0.18	0.79	3.8		
10.0	1.8	7.9	38		

For a maximum of 10% decrease in column efficiency due to extracolumn broadening:

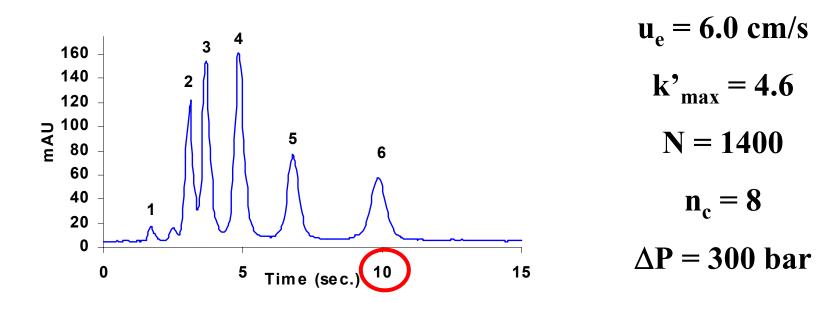
Column Temperature (°C)	ire (°C) 40 ^{a,b}		150 ^{c,d}			
Retention Factor	1	5	1	5		
V _{injection} (μl)	3.8	11.4	5.1	15.4		
V _{detector} (μΙ)	3.8	11.4	5.1	15.4		
Detector response time (s)	0.3	1.0	0.02	0.05		
L _{connecting tubing} (cm) ^e	17.2	155	1.3	11.3		
a. hypothetical van Deemter coefficients are A=1.5, B=5, C=.03						
b. assumes flow rate of 0.2 ml/min.						
c. hypothetical van Deemter coefficients are A=1.5, B=5, C=.0075						
d. assumes flow rate of 5.0 ml/min.						
e. hypothetical diffusion coefficient = $1.0 \times 10^{-5} \text{ cm}^2/\text{s}$ at 30 °C						

Thompson, J. D.; Carr, P. W. Analytical Chemistry 2002, 74, 4150-4159

Schematic of a Complete LC × UFHTLC System



All components are controlled using Labview


Developing Instrumentation -Sample Transfer in 2DLC

Position 1

Position 2

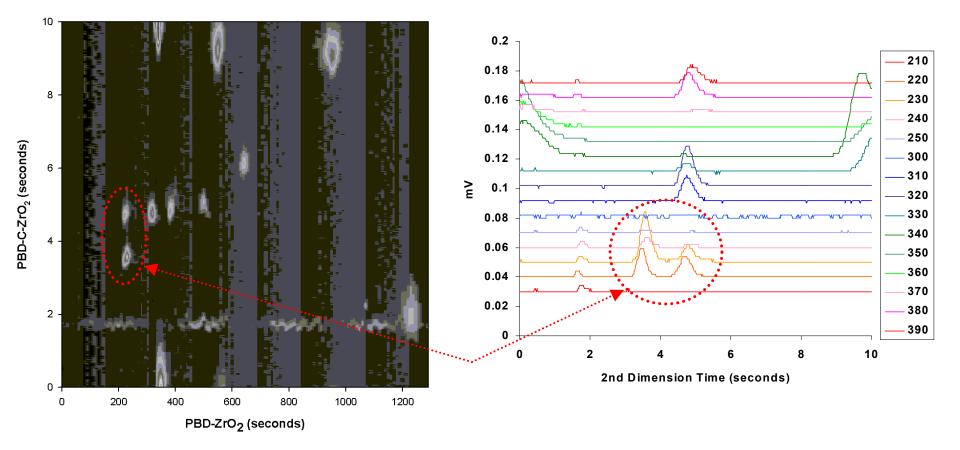
A Very Fast One-Dimensional Separation

Column: 50 mm x 2.1 mm i.d. PBD-C-ZrO₂

Temperature: 150 °C

Flow rate: 4.75 ml/min.

Injection volume: 1 µl

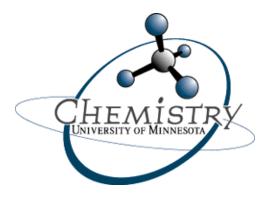

Detection at 254 nm with 6 µl flow cell and 50 ms detector response time

Solutes: Acetone, propiophenone, butyrophenone, valerophenone, hexanophenone, and heptanophenone

LC × **UFHTLC** Separation of Ten Triazine Herbicides

1st Dimension Conditions: Column, 50 mm x 2.1 mm i.d. PBD-ZrO₂; Mobile phase, 20/80 ACN/Water; Flow rate, 0.08 ml/min.; Injection volume, 20 μl; Temperature, 40 °C

2nd Dimension Conditions: Column, 50 mm x 2.1 mm i.d. PBD-C-ZrO₂; Mobile phase, 20/80 ACN/Water; Flow rate, 7.0 ml/min.; Injection volume, 15 μ l; Temperature, 150 °C; 1st dimension sampling frequency, 0.1 Hz


Conclusions

- Implementation of UFHTLC in the second dimension separation of 2DLC will allow comprehensive 2DLC separations on a practical timescale. This will...
 - **Extend** the peak capacity **limit** of practical HPLC
 - **Increase** the **rate** of peak capacity production in HPLC
- The dramatically increased peak capacity will allow faster separations of complex pharmaceutical and biological samples

Acknowledgements

Professor Peter W. Carr ZirChrom Separations, Inc.

Systec Inc.

