

Creating Stable Zirconia Phases for Chiral and other HPLC Applications with Novel Chelating Reagents

<u>Richard A. Henry¹</u>, Clayton V. McNeff¹, Bingwen Yan¹ Shengxiang Ji², Daniel Nowlan², Thomas R. Hoye² ¹ZirChrom Separations, Inc. 617 Pierce St., Anoka, MN 55303, ²University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455

Specialists in High Efficiency, Ultra-Stable Phases for HPLC

A New Synthetic Approach for Producing Stable Bonded Phases on Zirconia

- 1-Step and 2-Step Synthetic Approaches for Stationary Phase (SP) Attachment, Including Chiral (CSP)
- Chiral Separations on Zirconia Based CSPs
- Effect of Mobile Phase Additives on α , k' and N
- Stability Study

- 1-Step and 2-Step Coating Procedures for Chiral Screening
 - Careful selection of an anchor group results in a stable CSP that can be stripped off and reattached under high pH condition. This offers the novel possibility of regeneration or use for Chiral Selector Screening.

Methanol Effect on Zr (S)-NESA

Sample: (R/S)-N-3,5-dintrobenzoyl-a-amino-2,2dimethyl-4-pentenyl dimethyl phosphonate

Conditions: 89/11 Hexane/IPA, F=1 ml/min, 30 °C.

Conditions: 90 / 2 / 8 (99/1 Hexane/IPA) / MeOH / (70/30 Hexane/IPA), F=1 ml/min, 30 °C

Conditions: 80 / 10 / 10 (99/1 Hexane/IPA) / MeOH / (70/30 Hexane/IPA), F=1 ml/min, 30 °C

Column ID: ZrCSP051605C, Mobile phase: 15/85 ACN/0.01 mM TFA pH 2, Temperature: 30 °C. Injection volume: 5 ul, Wavelength: 254 nm. Probe solutes:(R/S)-3,5-dinitro-N-(1-phenylethyl)benzamide.

Phosphonate Modified Cellulose-Based CSP on Zirconia

Retention Comparison Between Undecylphosphonate Cellulosic Zirconia and a Commercial CSP

ZirChrom[®]

Comments:

Zirconia phase has less retention compared to the commercial silica-based column likely due to lower loading. Future studies will look at increased stationary phase loading.

Selectivity Comparison Between Undecylphosphonate Modified Cellulosic Zirconia and a Commercial CSP

Comments:

zirconia has

comparable

Undecylphosphonate

modified cellulosic

selectivity to the

based column.

Commercial silica-

4.0 3.5-Zirconia CSP 3.0 Silica CSP α 2.5 2.0 1.5 1.0 0.5 3.5-dinition M. 1. prenylethynbertamide r-2-naphthy/r-butyrolactone artifluoromethylipenzyl acond TitluGantroy Ethanol 1-phenyl 1-propanol amethylbentyloyanide trans-stillene Oxide o.Metryl¹-naprinariens metranol trans-stilbene Oxide Napropanide

β-Blocker Separations on Undecylphosphonate Modified Cellulosic Zirconia

ZirChrom[®]

<u>LC Conditions:</u> Agilent 1100 with chemstation, flow rate 0.5 mL/min., UV 254, mobile phase = 35/65 heptane/IPA with 100 mM ammonium acetate, Temperature = ambient, column dimension 10 cm x 4.6 mm id, 3 micron particles.

Mobile Phase Additive Effect on the Separation of Enantiomers on Undecylphosphonic Acid Modified Cellulosic Zirconia

Ion Strength/	Ammonium Actate in IPA (mM)			
Selectivity	200	100	80	40
Pindolol	2.87	2.10	1.79	1.30
Propranolol	1.55	1.53	1.35	1.10
Atenolol	1.26	1.12	1.09	1.00
Nadolol	1.00	1.00	1.00	1.00

Decreasing ammonium acetate decreases the enantioselectivity.

<u>LC Conditions:</u> Agilent 1100 with chemstation, flow rate 0.5 mL/min., UV 254, mobile phase = 100% IPA with specified concentration of ammonium acetate, Temperature = ambient, column dimension 10 cm x 4.6 mm id, 3 micron particles.

1- Original column.

- 2- Column flushed with 15/85 ACN/pH 12 NH₄OH for 10 column volumes, then 10 column volumes of water, 10 column volumes of 1.0 M nitric acid, and 10 column volumes of water.
- 3- Column then flushed with 50 column volumes of 20/80 ACN/ 1 M NaOH, then 10 column volumes of water, 10 column volumes of 1 M nitric acid and 10 column volumes of water.
- 4- Column then flushed with 20/80 ACN/ 1 M NaOH for 50 column volumes at 60 °C, then flushed with 10 column volumes of water, 10 column volumes of 1 M nitric acid, and 10 column volumes of water.

Changing Chiral Selectors

(S)-DNB-L-Phenylglycine (S-PG)

(R)-DNB-L-Phenylglycine (R-PG)

Pre-mixed 98/0.5/1.5 Hexane/TFA/IPA, F=1 ml/min, rm °C, 254 nm, Column: ZirChrom PDA-(S)-PG, S/N SPG122005D and ZirChrom PDA-(R)-PG, S/N RPG020806A (100 × 4.6 mm, 3 μm, Running HPLC coated on PHASE110805A, batch#: 52-132). Solute: 1,3,5-Tri-t-butyl-benzene, (R orS)-2,2,2-Trifluoro-1-(9-anthryl) EtOH. 5 μl injection.

Example 1-Step Attachment and Detachment Cycle

- Pass a solution of 20 mM N-(4-nitrobenzoyl)-L-glutamic acid (CSP) in tetrahydrofuran for 10 minutes at a column temperature of 60°C and a flow rate of 1 mL/min.
- Flush column with 100% THF for 10 minutes at 2 mL/min at ambient temperature.
- Separate a racemic solution of (±)-2,2,2trifluoro-1-(9-anthyl)ethanol.
- Strip the CSP by flushing the column with a 50 mM solution of tetramethylammonium hydroxide solution (pH 12) for 20 minutes at 60°C using a flow rate of 1 mL/min.
- Repeat procedure using the same CSP

N-(4-nitrobenzoyl)-Lglutamic acid

Glutamic Acid Proof of Concept

ZirChrom[®]

Comparison between the initial and final separation of (\pm)-2,2,2-trifluoro-1-(9-anthyl)ethanol leucine ester during a single CSP screening cycle. Chromatographic conditions: mobile phase: 99/1 hexane/IPA; flow rate: 1 ml/min; temperature: 30 °C, solute concentration = 1mg/mL, 5 µL injection.

Conclusions

ZirChrom®

- Five new CSPs were attached to zirconia using Lewis acid-base chemistry: *π*-acceptors: Zr (S)-Leu, Zr (R)-PG, and Zr (S)-PG *π*-donors: Zr (R)-NESA, Zr (S)-NESA
- A novel cellulosic based CSP on zirconia was also successfully synthesized and compared to an analogous silica-base CSP.
- Zirconia CSPs are reproducible, stable and have comparable chromatographic performance to commercial silica-based CSPs for the chiral compounds tested.
- Mobile phase additives (ammonium acetate) had a positive effect on efficiency, retention, and selectivity under NP conditions for the Undecylphosphonic Acid Modified Cellulosic Zirconia Column.
- Attachment of different chiral selectors has been demonstrated on zirconia using a single column and multiple chiral selectors. Attachment has been demonstrated by both 2-step and 1-step methods.

Acknowledgement: *National Institutes of Health Grant* (Phase II SBIR) 2R44HL070334-02A2.

Separation Comparison of Basic Pharmaceuticals on Zr-C18 and Silica C18

