

"New Method for Fast IgY Purification on a Chelator-modified Zirconia

Eastern Analytical Symposium 2007

Bingwen Yan, Clayton V. McNeff ZirChrom Separations, Inc.

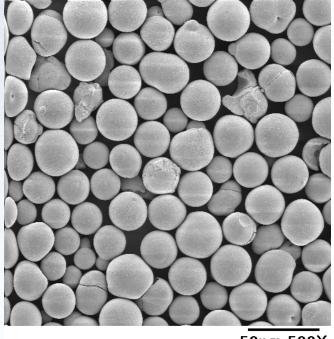
1

Abstract

ZirChrom[®]

The research presented here describes the manufacture of a new class of porous zirconia micro-spheres, by spray drying, for large-scale preparative liquid chromatography of bio-molecules. Porous zirconia particles with an average diameter of 25 microns are coated with ethylenediamine-N, N'-tetra(methylphosphonic) acid (EDTPA) to produce a bio-compatible cation-exchange stationary phase for the purification of proteins. The coated zirconia particles can be packed into preparative liquid chromatographic columns and used for rapid large-scale purification of monoclonal antibodies. These mechanically stable zirconia columns can be run at very high mobile phase linear velocities compared to soft affinity gels functionalized with Protein A or Protein G. Thus dramatic increases in *purification throughput* are possible with the new zirconia phase. Most importantly, EDTPA modified zirconia (Rhinophase[®]-AB) can purify a wide range of IgG subclasses, as well as IgA and IgM, providing a robust alternative to affinity chromatographic media.

Outline

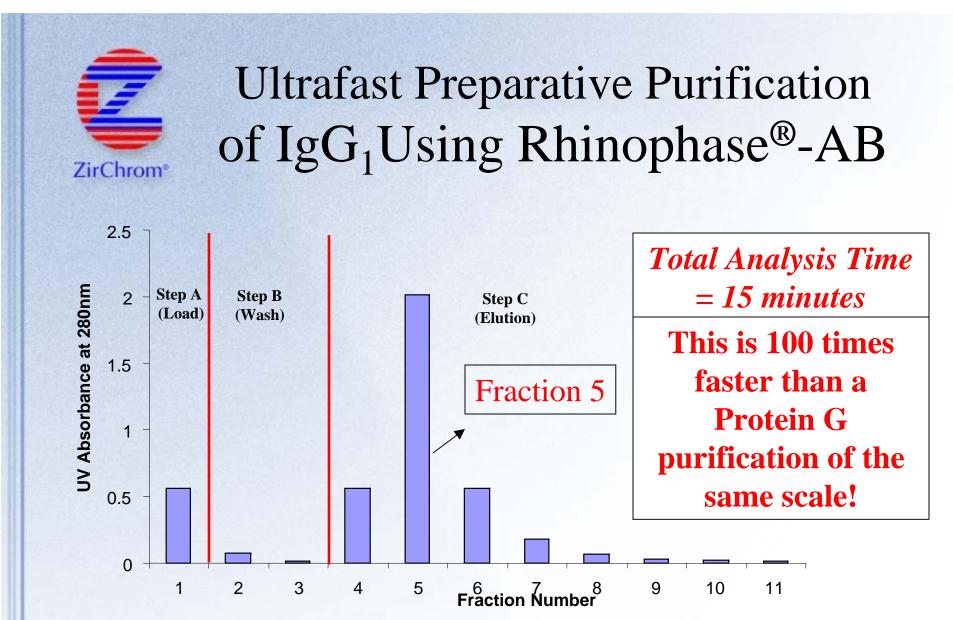

• Physical characteristics of 25 micron porous zirconia

- State-of-the-art Mab purification method
- Preparative Mab purification on 25 micron Rhinophase[®]-AB
- Direct Comparison of Mab purified with Rhinophase[®]-AB versus affinity gel Protein G media
- Binding Capacity of Different Subclasses of Mab on Rhinophase[®]-AB
- Binding Capacity of IgGs derived from different animal sources on Rhinophase[®]-AB
- Binding Capacity of IgG, IgA and IgM on Rhinophase[®]-AB
- IgY Purification from an Egg Yoke
- Conclusions

ZirChrom[®]

SEM and Nitrogen Porosimetry Data for Rhinophase[®]-AB

The spray dried particles are easily size classified using standard screens. The final material has large pores so that large bio-molecules can diffuse into the porous beads.

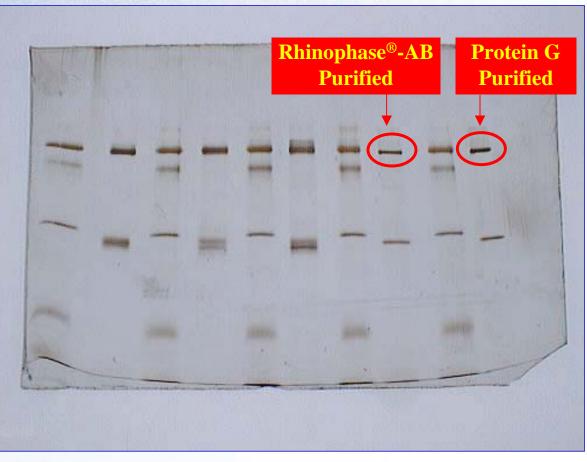

50µm 500X

Sample	Surface Area (m ² /g)	Pore Volume (ml/g)	Average Pore Diameter (Å)
Rhinophase [®] -AB	14	0.100	300

A New Ultrafast Preparative Purification Method Using Rhinophase[®]-AB

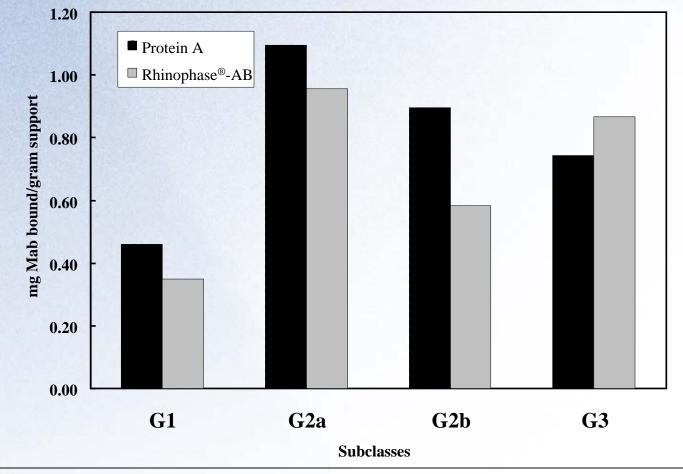
Due to zirconia's very high mechanical strength, Mab purifications can be performed at high mobile phase linear velocities. A simple vacuum filtration apparatus can be use to achieve very high flow rates through a packed bed (90 mL/min). This approach is not possible using soft affinity gels such as Protein A and Protein G media.

Step A = 20 mM MES buffer, 4 mM EDTPA, 50 mM NaCl @ pH 4.0, Step B = 20 mM MES buffer, 4 mM EDTPA, 50 mM NaCl @ pH 4.0, Step C = 20 mM MES buffer, 4 mM EDTPA, 2.0 M NaCl @ pH 4.0. Flow Rate = 60 mL/min, Injection size = 31.6 mL serum-free cell culture supernatant diluted 4-times with loading buffer, (3.98 mg of Mab), Amount of Rhinophase[®]-AB in tube = 10 grams.


ELISA Plate Comparison of Protein G and the Ultrafast Purification on Rhinophase[®]-AB

	OD 2		
Protein	Protein G	Rhinophase [®] -AB	
Offered	Purified IgG	Fraction 5	Fraction 5
15.6	0.0531	0.0502	94.5%
31.3	0.0946	0.0992	104.9%
62.5	0.1676	0.1892	112.9%
125	0.3176	0.3632	114.4%
250	0.5596	0.6362	113.7%
500	1.0166	1.1507	113.2%
1000	1.8151	1.8632	102.6%
		Average %	108.0%

An ELISA plate analysis using the same amount of Mab from Protein G and Rhinophase[®]-AB purifications showed an increased signal for the Rhinophase[®]-AB purified Mab.


Mab Purity Comparison from Semi-Preparative Run

Silver-stained, SDS-PAGE gel Comparing IgG_1 purified by Protein G (row 1 from right) and Rhinophase[®]-AB (row 3 from right). Electrophoresis was run under reducing conditions. Sample loading at 1 μ g per lane. All other lanes are standards.

Purified Mab was equally pure using Protein G and Rhinophase[®]-AB.

Relative Binding Strength of Different Subclasses of Mab

Rhinophase[®]-AB had high binding capacity for a variety of different Mab subclasses and is comparable to Protein A media.

Binding Capacity of Other Immunoproteins on Rhinophase[®]-AB

	Rhinophase [®] -AB		
Sample	Capacity (mg antibody/mL particles)*		
hIgG	28		
hIgA	9		
hIgM	2		

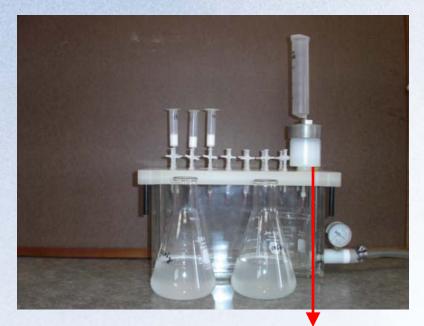
*All values are reported as an average of 3-independent replicate experiments. The standard deviation is less than 5%. All capacities are reported as mg Ig bound per ml of beads.

IgY Purification Method

ZirChrom[®]

Sample Preparation

Separate the egg yolk from the egg white using the egg separator. Add the yolk into the beaker. Take 15.93 g of the yolk. Add 637.2 g buffer A (0.2 mM MES + 0.04 mM EDTPA + 0.5 mM NaCl, pH 4.0 with NaOH pH adjustment). Mix it completely by shaking for 3 minutes. Centrifuge it for 15 min at 3750 rpm and filter supernatant with filter paper (Fisher Sci., Catalog No: 09-795G, 18.5 cm OD). The resulting solution is cloudy and can then be injected onto the SPE tube packed with the zirconia in loading buffer.


Elution Conditions

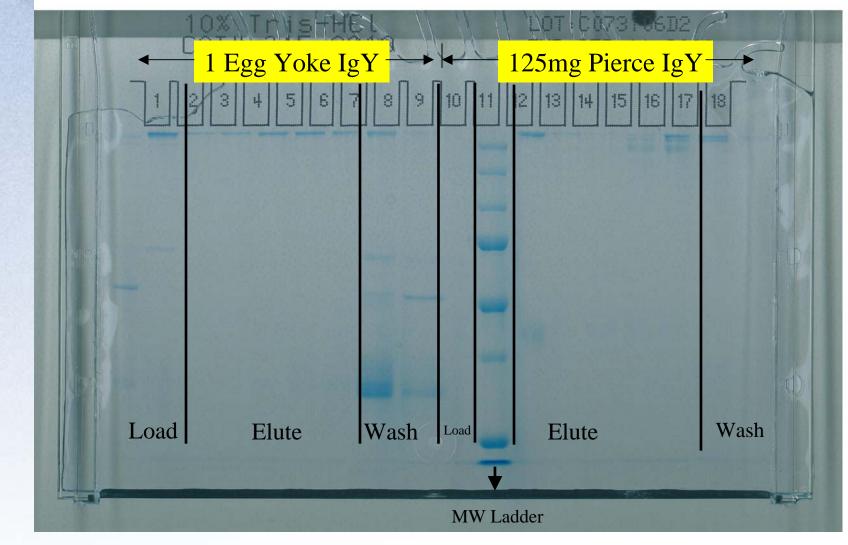
- 1. <u>Loading Buffer</u>: 0.2 mM MES +0.04 mM EDTPA + 0.5 mM NaCl, pH 4.0 with NaOH pH adjustment.
- 2. <u>Matrix Protein Elution Buffer</u>: 20 mM MES +4 mM EDTPA + 200 m M NaCl, pH 4.0 with NaOH pH adjustment.
- 3. <u>IgY Elution Buffer</u>: 20 mM MES +4 mM EDTPA + 400 m M NaCl, pH 4.0 with NaOH pH adjustment.
- 4. <u>Wash Buffer</u>: 20 mM MES +4 mM EDTPA + 1 .5 M NaCl, pH 4.0 with NaOH pH adjustment.

Note: All flow rates were approximately 16 mL/min

Fast Purification of IgY

Vacuum manifold for loading the VersaFlash Column Supelco VersaFlash Purification Station

Supelco VersaFlash Cartridge packed with Rhinophase[®]-AB ₁₂


Gel Electrophoresis Key

(elution conditions for following slide)

				mL
IgY from Zirconia Purification IgY Standard From Kit Purification	1	2006072501	Sample	150
	2	2006072511	20 mM MES+4 mM EDTPA+ 200 mM NaCl, pH 4	611
	3	2006072512	20 mM MES+4 mM EDTPA+ 200 mM NaCl, pH 4	661
	4	2006072521	20 mM MES+4 mM EDTPA+ 400 mM NaCl, pH 4	1036
	5	2006072522	20 mM MES+4 mM EDTPA+ 400 mM NaCl, pH 4	1086
	6	2006072523	20 mM MES+4 mM EDTPA+ 400 mM NaCl, pH 4	1136
	7	2006072524	20 mM MES+4 mM EDTPA+ 1500 mM NaCl, pH 4	1186
	8	2006072541	20 mM MES+4 mM EDTPA+ 1500 mM NaCl, pH 4	1717
	9	2006072542	20 mM MES+4 mM EDTPA+ 1500 mM NaCl, pH 4	1767
	10	2006071701	Sample	50
	11 Protein Standard MW Ladder			
	12	2006071711	20 mM MES+4 mM EDTPA+ 200 mM NaCl, pH 4	130
	13	2006071712	20 mM MES+4 mM EDTPA+ 200 mM NaCl, pH 4	180
	14	2006071721	20 mM MES+4 mM EDTPA+ 400 mM NaCl, pH 4	455
	15	2006071722	20 mM MES+4 mM EDTPA+ 400 mM NaCl, pH 4	505
	16	2006071723	20 mM MES+4 mM EDTPA+ 400 mM NaCl, pH 4	555
	17	2006071741	20 mM MES+4 mM EDTPA+ 1500 mM NaCl, pH 4	1130
	18	2006071742	20 mM MES+4 mM EDTPA+ 1500 mM NaCl, pH 4	1180

Gel Electrophoresis of Purified IgY from a Commercial Kit and on Rhinophase[®] AB

14

ZirChrom*

Conclusions

- Rhinophase[®]-AB provides a widely applicable alternative to currently used Protein A and Protein G antibody purification media.
- Typical yields of Mab purifications greater than 95%, with purity levels equal to or greater than affinity gel-type media.
- Due to Rhinophase[®]-AB's excellent mechanical stability, purifications can be performed 100-fold faster with equivalent results.
- Rhinophase[®]-AB is chemically durable over the entire pH range, which allows for cleaning and depyrogenation (data not shown).
- ELISA plates produced with Rhinophase[®]-AB purified Mab showed greater signal than those produced with Protein G purified Mab.
- Rhinophase[®]-AB has affinity for a wide range of immunoprotein classes and subclasses including monoclonal and polyclonal IgG, IgA, and IgM.

ZirChrom*

Conclusions Continued

- IgY purity in elution fractions looks very high on Rhinophase[®]-AB.
- Some IgY was observed in the fall-through for the Rhinophase[®]-AB, but this may be due to channeling.
- Matrix proteins are eluted at high ionic strength (>400 mM NaCl) for both samples.
- Rhinophase[®]-AB is able to fractionate Commercial Kit IgYs at different ionic strengths.
- 125 mg of Commercial Kit purified IgY was run versus the IgY from an egg yoke. *Similar overall recovery was observed based on gel electrophoresis spot intensity.*
- Fast, Easy Scale-up of IgY purification from egg yokes is feasible using the Supelco VersaFlash Purification Station and Rhinophase[®]-AB.
- Acknowledgement: National Institutes of Health Grant # 5 R44 GM58354-03.