

Chiral Separations on Zirconia-Based Chiral Stationary Phases

<u>Richard A. Henry¹</u>, Clayton V. McNeff¹, Bingwen Yan¹ Shengxiang Ji², Daniel Nowlan², Thomas R. Hoye²

1. ZirChrom Separations, Inc. 617 Pierce St., Anoka, MN 55303,

2. University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455.

Specialists in High Efficiency, Ultra-Stable Phases for HPLC

Zirconia chemistry is dominated by Lewis acid-base reactions

Lewis Acid: Zr^{4+} : $H_2O + RPO_3^{2-} \implies Zr^{4+}$: $RPO_3^{2-} + H_2O$ Other Lewis base examples: PO_4^{3-} , RCO_2^{-} , Catechol

R. A. Henry EAS 2006

- 1. William H. Pirkle, et. al., J. Chromatogr., 316 (1984) 585.
- 2. 2. Phase I SBIR Grant (NIH).

Interaction Strength of Lewis Bases with Zirconia¹

Interaction Strength	Lewis Base (L)	
Strongest	Hydroxide Phosphate Fluoride Citrate Sulfate Acetate Formate Nitrate Chloride	Small Lewis bases with high electron density and low polarizability interact more strongly with Zr atoms.
	Water	

1. J.A. Blackwell and P.W. Carr, "Development of an Eluotropic Series for the Chromatography of Lewis Bases on Zirconium Oxide," Anal. Chem. 64, 863-73 (1992).

A Bidentate Phosphonate Anchorthe Key to Improved Stability¹

Aminopropylphosphonic acid (APPA)

Pamidronic acid (PDA)¹ (Phase II Anchor)

Bidentate anchor

1. Phase II SBIR (NIH).

R. A. Henry EAS 2006

R. A. Henry EAS 2006

Chiral Separations on Zr (S)-NESA (π- donor phase)

ZirChrom[®]

Methanol Effect on Zr (S)-NESA

Stability of Zr-(S)-NESA at pH 2

Column ID: ZrCSP051605C, Mobile phase: 15/85 ACN/0.01 mM TFA pH 2, Temperature: 30 °C. Injection volume: 5 ul, Wavelength: 254 nm. Probe solutes:(R/S)-3,5-dinitro-N-(1-phenylethyl)benzamide.

Column ID: ZrCSP051605C, Mobile phase: 15/85 ACN/0.01 mM TFA pH 2, Temperature: 30 °C. Injection volume: 5 ul, Wavelength: 254 nm. Probe solutes:(R/S)-3,5-dinitro-N-(1-phenylethyl)benzamide.

Stability of Zr-(S)-DNB-Leu at pH 8

Column ID: ZrCSP032805A, Mobile phase: 15/85 ACN/5 mM ammonium hydrogencarbonate pH 8.0, Temperature: 30 °C. Injection volume: 5 ul, Wavelength: 254 nm. Probe solutes:(R/S)-2, 2, 2-trifluoro-1-(9anthryl)ethanol

Changing Chiral Selectors

(S)-DNB-L-Phenylglycine (S-PG)

(R)-DNB-L-Phenylglycine (R-PG)

Pamidronic acid derivatives

Stripping Experiment: (S)-PG CSP

Pre-mixed 98/0.5/1.5 Hexane/TFA/IPA, flow rate=1 ml/min, ambient temperature, 254 nm, Column: ZirChrom PDA-(S)-PG, S/N SPG122005D (100 × 4.6 mm, 3 μm, Running HPLC coated on PHASE110805A, batch#: 52-132). Solute: (1) 1,3,5-Tri-t-butyl-benzene, (2) (S)-2,2,2-Trifluoro-1-(9-anthryl) ethanol , (3) (R)-2,2,2-Trifluoro-1-(9-anthryl) ethanol 5 μl injection.

- 1- Original column.
- 2- Column flushed with 15/85 ACN/pH 12 NH₄OH for 10 column volumes, then 10 column volumes of water, 10 column volumes of 1.0 M nitric acid, and 10 column volumes of water.
- 3- Column then flushed with 50 column volumes of 20/80 ACN/ 1 M NaOH, then 10 column volumes of water, 10 column volumes of 1 M nitric acid and 10 column volumes of water.
- 4- Column then flushed with 20/80 ACN/ 1 M NaOH for 50 column volumes at 60 °C, then flushed with 10 column volumes of water, 10 column volumes of 1 M nitric acid, and 10 column volumes of water.

Pre-mixed 98/0.5/1.5 Hexane/TFA/IPA, F=1 ml/min, rm °C, 254 nm, Column: ZirChrom PDA-(S)-PG, S/N SPG122005D and ZirChrom PDA-(R)-PG, S/N RPG020806A (100 × 4.6 mm, 3 μm, Running HPLC coated on PHASE110805A, batch#: 52-132). Solute: 1,3,5-Tri-t-butyl-benzene, (R orS)-2,2,2-Trifluoro-1-(9-anthryl) EtOH. 5 μl injection.

Example 1-Step Attachment and Detachment Cycle

- Pass a solution of 20 mM N-(4-nitrobenzoyl)-L-glutamic acid (CSP) in tetrahydrofuran for 10 minutes at a column temperature of 60°C and a flow rate of 1 mL/min.
- Flush column with 100% THF for 10 minutes at 2 mL/min at ambient temperature.
- Separate a racemic solution of (±)-2,2,2trifluoro-1-(9-anthyl)ethanol.
- Strip the CSP by flushing the column with a 50 mM solution of tetramethylammonium hydroxide solution (pH 12) for 20 minutes at 60°C using a flow rate of 1 mL/min.
- Repeat procedure using the same CSP

N-(4-nitrobenzoyl)-Lglutamic acid

Glutamic Acid Proof of Concept

Comparison between the initial and final separation of (\pm) -2,2,2-trifluoro-1-(9-anthyl)ethanol leucine ester during a single CSP screening cycle. Chromatographic conditions: mobile phase: 99/1 hexane/IPA; flow rate: 1 ml/min; temperature: 30 °C, solute concentration = 1mg/mL, 5 µL injection.

ZirChrom[®]

Development of a New Class of Regenerable Cellulosic Coated Zirconia Stationary Phases

Carboxylate Modified Cellulose Based CSP on Zirconia

Anchor

R. A. Henry EAS 2006

*Data of α from Carr, et al., Anal. Chem., 71 (1999) 3013-3021

Retention Comparison Between Alkylphenyl Modified Cellulosic CSPs and Commercial Silica CSPs

41-C54, J04-175, 3,5-dimethylphenyl, -C₁₁H₂₂PO₃H Commercial Silica CSP column

ZirChrom[®]

New phase has less

commercial Silica-

retention than

Selectivity Comparison Between Undecylphenyl Carbamate Modified **Cellulosic CSPs and Commercial Silica CSPs**

4.0 41-C54, J04-175, 3,5-dimethylphenyl, -C₁₁H₂₂PO₃H₂ Commercial Silica CSP column 3.5 **Undecylphenyl** 3.0 41-C54 carbamate modified α 2.5 Commercial silica-based column cellulosic CSP has 2.0 good selectivity compared to a 1.5 commercial silica 1.0 column. 0.5 3.5-dinitronul premyermine a-trinuorometry/penzylaiconob ri2naphtmlr-butyoactone 1-preny-2-propanolb o.Methyl 1. 1.200 thatlens nethanol 1-pheny 1-propanolb amethybentyl cyanide Timurantiny Etragola 0.0 Hans-stillene Oxide Napropanide **a**: 90/10 hexane/IPA **b**: 98/2 hexane/IPA R. A. Henry EAS 2006

ZirChrom

Effect of Ionic Strength on the Separation of Basic Chiral Phamaceuticals on Undecylphosphonic Acid Modified Cellulosic CSPs

41-C54, J04-175, 3,5-dimethylphenyl, -C₁₁H₂₂PO₃H

Ion Strength/	Ammonium Actate in IPA (mM)			
Selectivity	200	100	80	40
Pindolol	2.87	2.10	1.79	1.30
Propranolol	1.55	1.53	1.35	1.10
Atenolol	1.26	1.12	1.09	1.00
Nadolol	1.00	1.00	1.00	1.00

Increasing ammonium acetate increases enantio-selectivity.

LC Conditions: Agilent 1100 with chemstation, flow rate 0.5 mL/min., UV 254, mobile phase = 100% IPA with specified concentration of ammonium acetate, Temperature = ambient, column dimension 10 cm x 4.6 mm id, 3 micron particles.

Effect of Ionic Strength on Undecylphosphonic Acid Modified Cellulosic CSPs

Increasing ammonium acetate increases the selectivity and decreases retention and improves peak shape for Pindolol. This is likely due to supression of cation-exchange retention mechanism that occurs for *basic molecules.*

ZirChrom[®]

Comparison of Silica and Zirconia Cellulosic Phases

Columns, (A) **CelluloZeTM** (Celu022006A), 100 × 4.6 mm, 3 µm Zirconia, (B) Silica-based column, 150 × 4.6 mm, 5 µm Silica, **Solute (RS)-(±)-2,2,2-Trifluoro-1-(9-anthryl) EtOH**, **Mobile phase** 90 / 10 Hexane / IPA, **Flow Rate**, 1 mL/min, **Column temperature**, ambient.

Comparison of Silica and Zirconia Cellulosic Phases

Columns, (A) **CelluloZeTM** (Celu022006A), 100 × 4.6 mm, 3 μm Zirconia, (B) Silica-based column, 150 × 4.6 mm, 5 μm Silica, **Solute Napropamide**, **Mobile phase** 90 / 10 Hexane / IPA, **Flow Rate**, 1 mL/min, **Column temperature**, ambient.

Comparison of Silica and ZirChron

Columns, (A) **CelluloZeTM** (Celu022006A), 100×4.6 mm, $3 \mu m$ Zirconia, (B) Silica-based column, 150×4.6 mm, $5 \mu m$ Silica, **Solute, trans stillbene oxide**, **Mobile phase** 90 / 10 Hexane / IPA, **Flow Rate**, 1 mL/min, **Column temperature**, ambient.

Separation of Basic Drugs on Phosphonated Cellulose Zirconia

Column, CelluloZeTM (Celu022006A), 100×4.6 mm, $3 \mu m$ Zirconia, Mobile phase, = 50/50 Heptane/IPA (100 mM NH₄OAc in IPA), Flow Rate, 1 mL/min, Column temperature, ambient.

ZirChrom*

Conclusions

- Brush-type CSPs were attached to zirconia using multidentate pamidronic acid (PDA).
- Zirconia-based CSPs were shown to be reproducible, stable and have comparable chromatographic performance to commercial silica-based Brush-type CSPs for a range of chiral compounds.
- Zirconia-based CSPs offer the user the potential to regenerate the chiral stationary phase online.
- The new zirconia-based cellulosic CSPs showed similar resolving power to commercial silica-based cellulosic CSPs for selected chiral compounds; increased ionic strength improved resolution of basic chiral compounds.

ZirChrom*

References

- 1. C. B. Castells and P. W. Carr, Anal. Chem., 1999, 71, 3013-3021.
- 2. C. B. Castells and P. W. Carr, Chromatographia, Vol. 52, No. 9/10, November 2000, 535-542.
- 3. C. B. Castells and P. W. Carr, J. of Chromatogr. A (2000) 904, 17-33.

Acknowledgement: *National Institutes of Health Grant* (Phase II SBIR) 2R44HL070334-02A2.

Thanks very much for listening!

Request copies of the talk at Booth 220

... For Peak Performance

www.zirchrom.com for more information and web access to the free Buffer Wizard