

Synthesis of Stable Brush-Type Zirconia Based Chiral Stationary Phases for Enantiomer Separations

Eastern Analytical Symposium 2006

Clayton V. McNeff¹, Bingwen Yan¹ Yini Wang², Shengxiang Ji², Daniel Nowlan², Thomas R. Hoye² ¹ZirChrom Separations, Inc. 617 Pierce St., Anoka, MN 55303, ²University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455.

Specialists in High Efficiency, Ultra-Stable Phases for HPLC

Goal-To Make Zirconia Based Chiral Stationary Phases for Fast Chiral Selector Screening

- Why Zirconia?
- Synthetic Approach
 - Building a zirconia-based CSP
 - Proof of concept
- Chiral Separations on Zirconia Based CSPs
- Stability Study
- Column Regeneration
- Conclusion Careful selection of an anchor group results in a stable CSP that can be stripped off and reattached under high pH condition. This offers the possibility of regeneration or use for chiral selector screening.

Selectivity Comparison Between PDA Anchored Zr (S)-Leu and APPA Anchored (S)-Leu

Selectivity for both anchors is very similar.

4

Stability of Zr-(S)-NESA at pH 2

ZirChrom[®]

Column ID: ZrCSP051605C, Mobile phase: 15/85 ACN/0.01 mM TFA pH 2, Temperature: 30 °C, Injection volume: 5 ul, Wavelength: 254 nm. Probe solutes:(R/S)-3,5-dinitro-N-(1-phenylethyl)benzamide

Stability of Zr-(S)-DNB-Leu at pH 8

ZirChrom[®]

Column ID: ZrCSP032805A, Mobile phase: 15/85 ACN/5 mM ammonium hydrogencarbonate pH 8.0, Temperature: 30 °C, Injection volume: 5 ul, Wavelength: 254 nm. Probe solutes:(R/S)-2, 2, 2-trifluoro-1-(9-anthryl)ethanol

Pre-mixed 98/0.5/1.5 Hexane/TFA/IPA, flow rate=1 ml/min, ambient temperature, 254 nm, Column: ZirChrom PDA-(S)-PG, S/N SPG122005D (100 × 4.6 mm, 3 µm, Running HPLC coated on PHASE110805A, batch#: 52-132). Solute: (1) 1,3,5-Tri-t-butyl-benzene, (2) (S)-2,2,2-Trifluoro-1-(9-anthryl) ethanol , (3) (R)-2,2,2-Trifluoro-1-(9-anthryl) ethanol (5 µl injection)

1- Original column

 2- Column flushed with 15/85 ACN/pH 12 NH₄OH for 10 column volumes, then 10 column volumes of water, 10 column volumes of 1.0 M nitric acid, and 10 column volumes of water

- 3- Column then flushed with 50 column volumes of 20/80 ACN/ 1 M NaOH, then 10 column volumes of water, 10 column volumes of 1 M nitric acid and 10 column volumes of water
- 4- Column then flushed with 20/80 ACN/ 1 M NaOH for 50 column volumes at 60 °C, then flushed with 10 column volumes of water, 10 column volumes of 1 M nitric acid, and 10 column volumes of water

Pre-mixed 98/0.5/1.5 Hexane/TFA/IPA, F=1 ml/min, 30 °C, 254 nm, Column: ZirChrom PDA-(S)-PG, S/N SPG122005D and ZirChrom PDA-(R)-PG, S/N RPG020806A (100 × 4.6 mm, 3 µm, Running HPLC coated on PHASE110805A, batch#: 52-132). Solute: 1,3,5-Tri-t-butyl-benzene, (R orS)-2,2,2-Trifluoro-1-(9-anthryl) EtOH (5 µl injection)

ZirChrom*

Conclusions

• Five new CSPs were attached to zirconia using the PDA anchor, including:

 π -acceptors: Zr (S)-Leu, Zr (R)-PG, and Zr (S)-PG π -donors: Zr (R)-NESA, Zr (S)-NESA

- The new Zirconia-based CSPs were found to be *fairly stable* in reversed-phase mobile phase from pH 2 to pH 8.
- Zirconia based CSPs have the potential to regenerate the chiral stationary phase online.
- Acknowledgement: *National Institutes of Health Grant* (Phase II SBIR) 2R44HL070334–02A2.

Thanks *very much* for listening!

Visit Us at Booth 220

For more information and web access to the free **Buffer Wizard:** www.zirchrom.com