

ProTainTM – A New In-Line Protein Removal System for HPLC

Bingwen Yan, Clayton V. McNeff

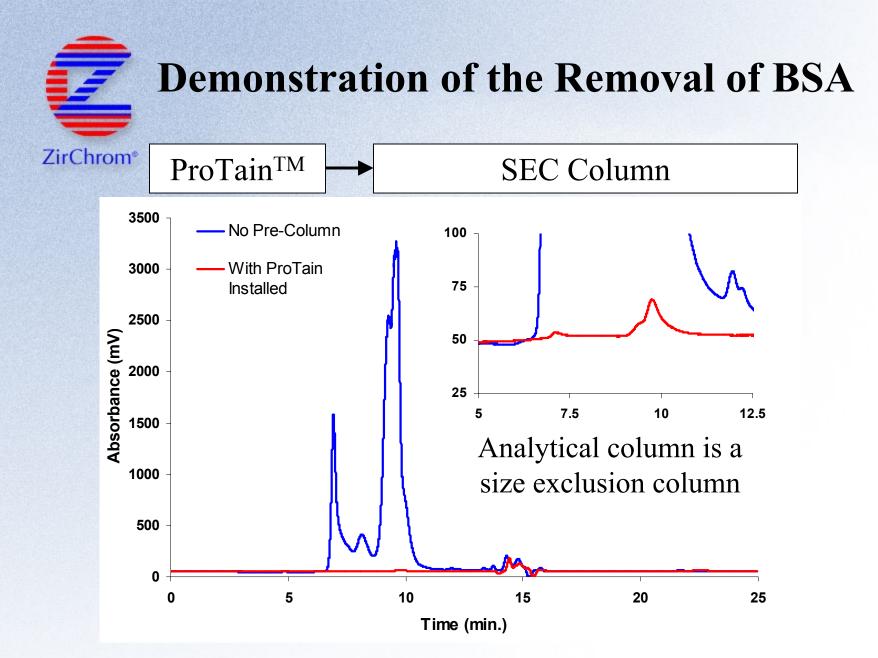
ZirChrom Separations, Inc.

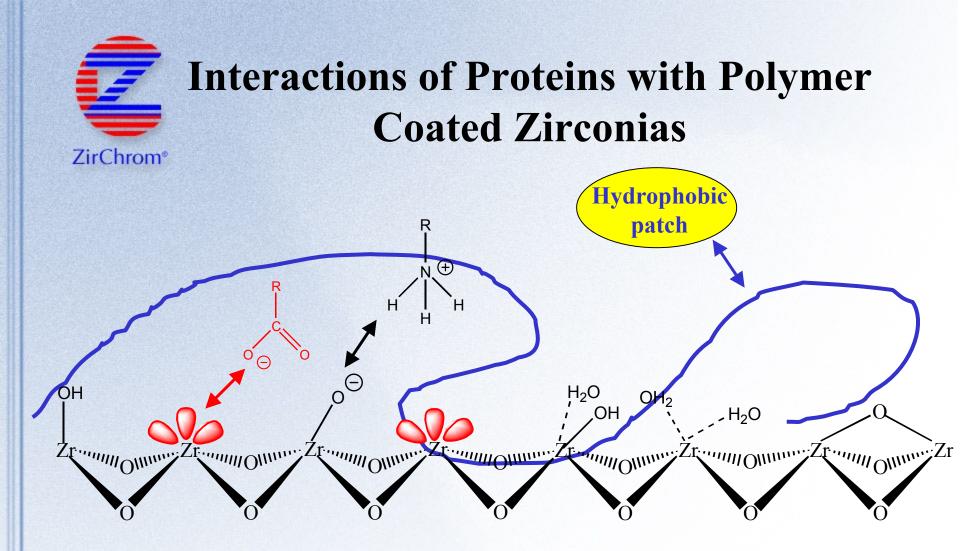
ZirChrom®

Outline

- The general problem Matrix interferences in biological samples lead to quantitation problems in HPLC
- A new solution $ProTain^{TM}$ A new in-line protein removal system
 - The chemistry of polymer coated zirconia makes it an ideal protein adsorbent
 - ProTainTM hardware
 - Demonstration of the removal of BSA
 - Detection of basic pharmaceuticals in serum by LC/UV
 - Reduction of baseline signal for LC/MS
- Customer feedback
- Visit ZirChrom Separations at our booth # 220

The General Problem

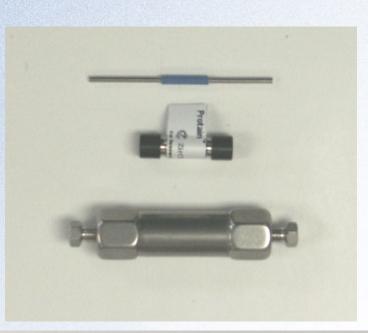

- Matrix proteins can cause fouling of the analytical column
- Matrix proteins can interfere with detection of small organic molecules by either UV/Vis or mass spectrometry
- Matrix intereferences can lead to inaccurate and irreproducible quantitation
- In the worst case, interferences can completely mask the elution of analytes of interest, and/or ruin the analytical column

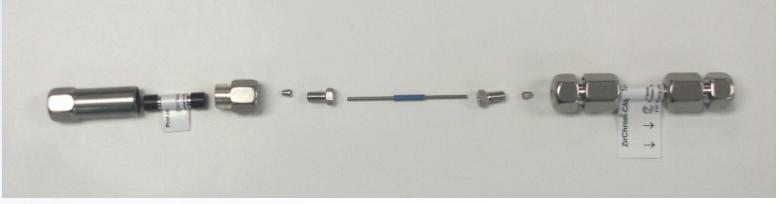

A New Solution - ProTainTM

ProTainTM is an in-line protein removal system

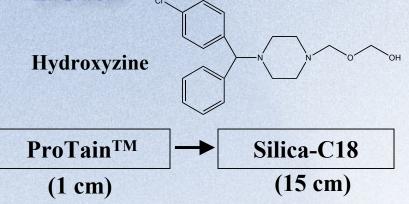
- ProTainTM uses a polymer coated zirconia material to effectively serve as a protein sponge, while allowing small molecules of interest to pass through to the analytical column
- ProTainTM can be used in-line with any type of silica, polymer, or zirconia-based analytical column

LC Conditions: Mobile phase, 20mM phosphate buffer, pH 6.8; Flow rate, 1.0 ml/min.; Temperature, ambient; Injection volume, 10 µl.




Three interactions acting simultaneously lead to irreversible adsorption of proteins on polymer coated zirconia materials

Hydrophobic, electrostatic, and ligand exchange interactions


The ProTainTM System

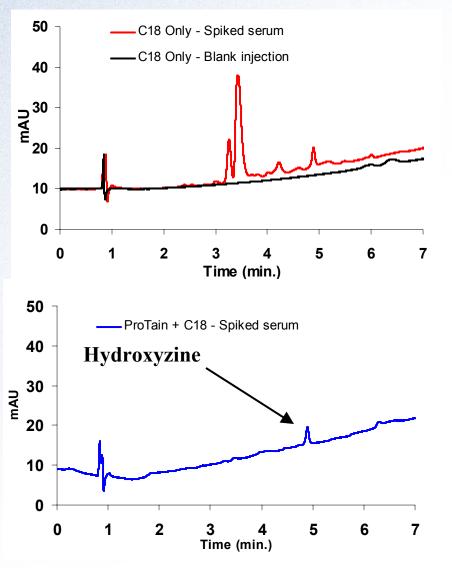
Detection of Basic Pharmaceuticals in Serum by LC/UV

ZirChrom®

Sample: 1 µg/ml hydroxyzine in serum diluted 1:10 with acetate buffer

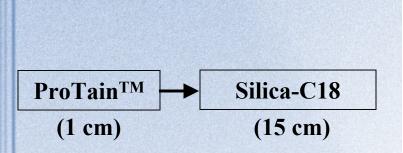
Mobile phase: 30-70% B in 6 minutes

A: 25mM TFA in water, pH 1.6


B: 25mM TFA in ACN

Flow rate: 2.0 ml/min.

Temperature: 35 °C


Injection volume: 10 µl

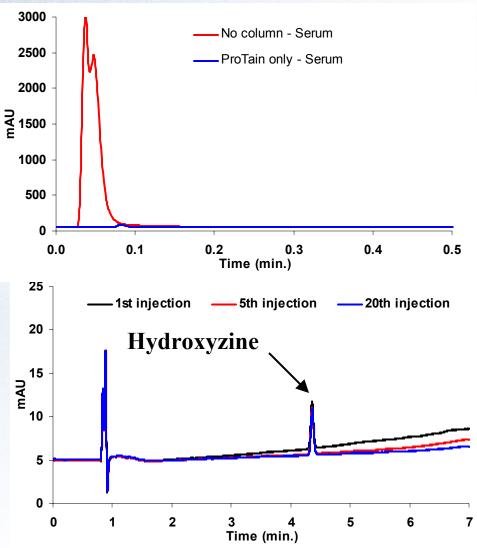
Detection: UV at 254 nm

Detection of Basic Pharmaceuticals in Serum by LC/UV

Sample: 1 µg/ml hydroxyzine in serum diluted 1:10 with acetate buffer

Mobile phase: 30-70% B in 6 minutes

A: 25mM TFA in water, pH 1.6


B: 25mM TFA in ACN

Flow rate: 2.0 ml/min.

Temperature: 35 °C

Injection volume: 10 µl

Detection: UV at 254 nm

Reduction of Baseline Signal for LC/MS

Intens. x10⁸ 2.5 C18-silica column only 2.0 1.5 1.0 ProTainTM + C18-silica column 0.5 0.0 10

Sample: Serum diluted 1:1 with water Mobile phase: 20-95% B in 10 minutes

A: water

B: ACN

Flow rate: 0.5 ml/min.

Temperature: 35 °C

Injection volume: 10 µl

Detection: MS TIC

Capacity Study

Purpose: To test the effect of pH and buffer type on the protein capacity of the Protain stationary phase. **Study Conditions:**

- Cartridge/Holder: 20 mm x 4.6 mm i.d. (Part Number: PT01-0246/850-00-2)
- Mobile Phase: 50/50 ACN / 20 mM Indicated buffer and pH
- Temperature: 30 °C
- Flow Rate: 1 ml/min.
- Injection Vol.: 5 µl
- Detection:UV at 280 nm

Capacity Study Results

		Buffer Type			
		TFA	Acetate	Phosphate	Carbonate
Mobile	2	+		++	
Phase pH	3		+	++	
pm	5		+++	+++	
	7		+++	+++	+
	9		+	+	+

Figure 1: Loadability Matrix for the ProTain Media Inserts Capacity: + = 0 - 0.2 mg + + = 0.2 - 1.0 mg + + + = 1.0 - 5.0 mgBlack Areas: Not tested due to lack of buffer capacity at pH

User Feedback

- ProTainTM is currently being used in validated methods for the determination of small pharmaceuticals molecules in protein-containing samples
- ProTainTM has provided sufficient versatility in method development for different sample types
- ProTainTM is a cost-effective alternative to other clean-up procedures such as liquid-liquid extraction and solidphase extraction

Summary – Benefits of ProTainTM

ZirChrom®

- ProTainTM is an in-line protein removal system that does not require extra handling of samples prior to analysis.
- ProTainTM uses a polymer coated zirconia material to effectively serve as a protein sponge, while allowing small molecules of interest to pass through to the analytical column.
- ProTainTM can be used in-line with any type of silica, polymer, or zirconia-based analytical column.
- The type of buffer, specifically its strength as a Lewis base, and the pH of the mobile phase play a significant role in determining the actual protein binding capacity.