The Preparation of Buffers with **ZirChrom's** Buffer Wizard

http://www.zirchrom.com

What is pH?

- A scale for measuring solution acidity/basicity $pH = -log a_{H}^{+} \cong -log [H^{+}]$
- In dilute solution, H⁺ activity is essentially equal to the H⁺ ion concentration.
- pH in water is commonly between 0 and 14

What is a pH buffer?

- A solution that resists changes in pH when small amounts of acids or bases are added to the solution or when the solution is diluted.
- The buffer solution is commonly prepared from a weak acid and its conjugate base or from a weak base and its conjugate acid.

How does a pH buffer resist changes in pH?

• A pH buffer contains species that can neutralize small amounts of acids & bases.

pH and Liquid Chromatography

- pH of the eluent may be changed by the sample being analyzed.
- The pH changes affect acid-base equilibria in the system.
- Shifts in the acid-base equilibria may affect reproducibility, selectivity, and peak shape for ionizable compound.
- High & low pH can also destabilize silica-based columns.

Why Control/Adjust pH?

- To improve (increase/decrease) retention.
- To adjust band spacing.
- To improve peak shape (tailing).
- To make results reproducible.
- To improve detection (UV, MS).

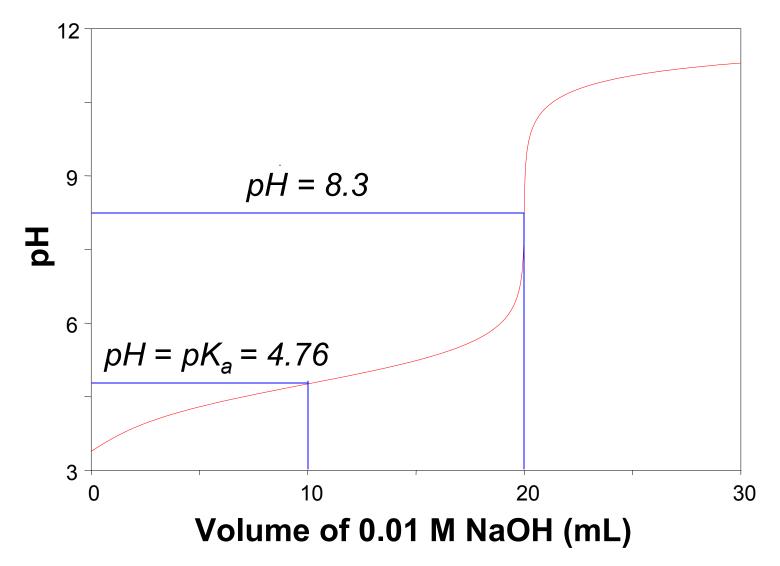
Buffer Capacity: A Key Concept

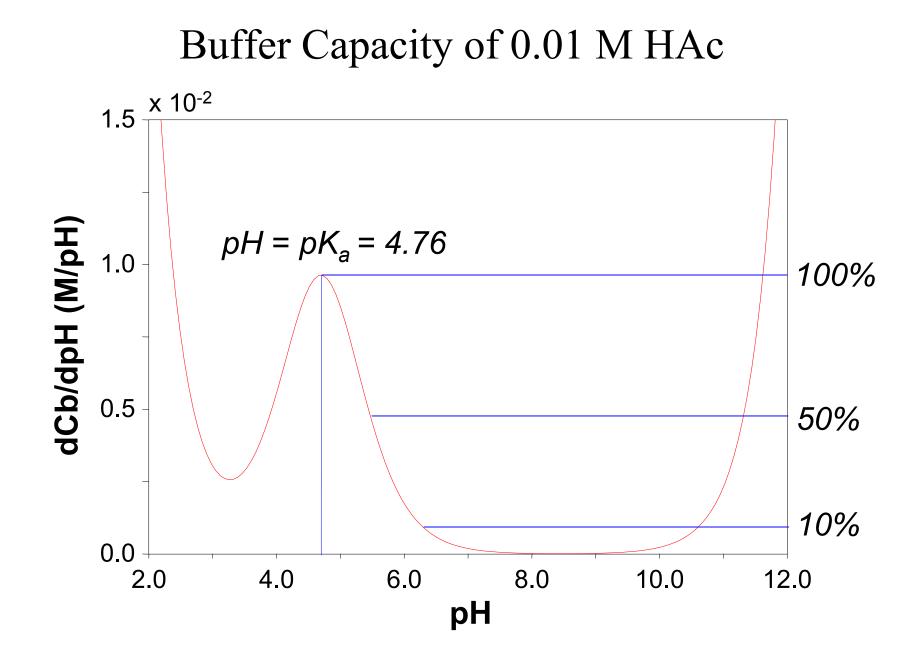
- Ability of a buffer to resist changes in pH upon addition of an acid or a base.
- Defined as the number of moles of strong acid or base per liter required to add to the solution to produce a unit change in pH.

 $\beta = dC_b / dpH = - dC_a / dpH$

Acetic Acid A Simple Monoprotic Acid-Base Equilibrium

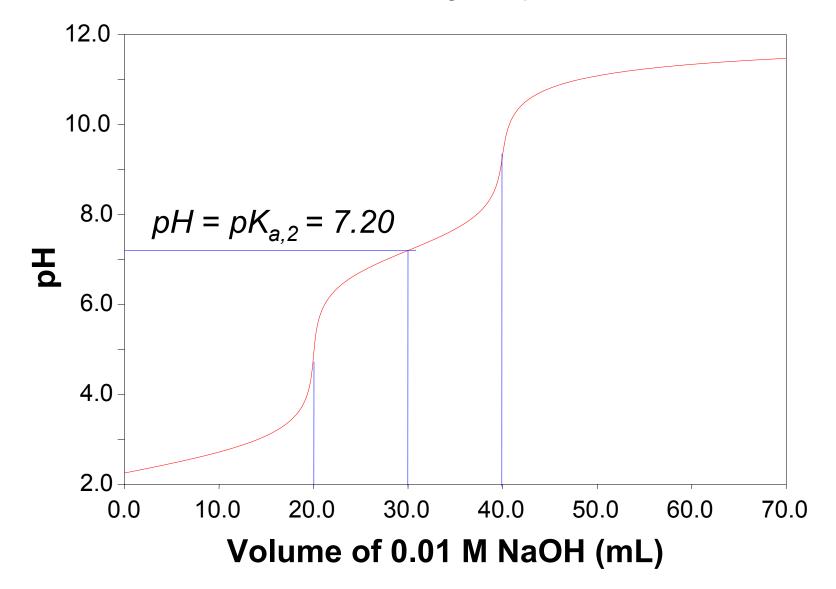
$$HA \Leftrightarrow H^{+} + Ac^{-} \qquad K_{a} = \frac{[H^{+}][Ac]}{[HAc]}$$

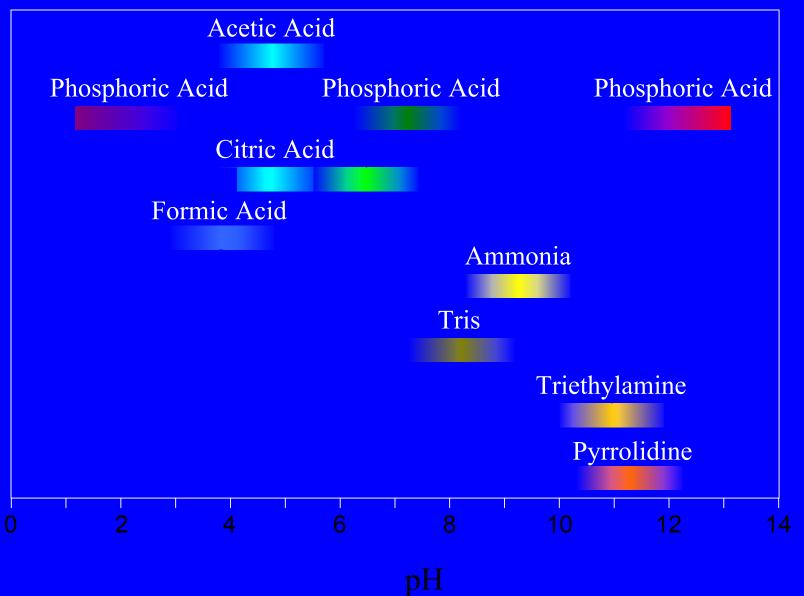

$$[H^+] = K_a \cdot \frac{[HAc]}{[Ac^-]}$$


 $pH = pK_a + \log \frac{[Ac^-]}{[HAc]}$

Henderson - Hasselbalch Eq.

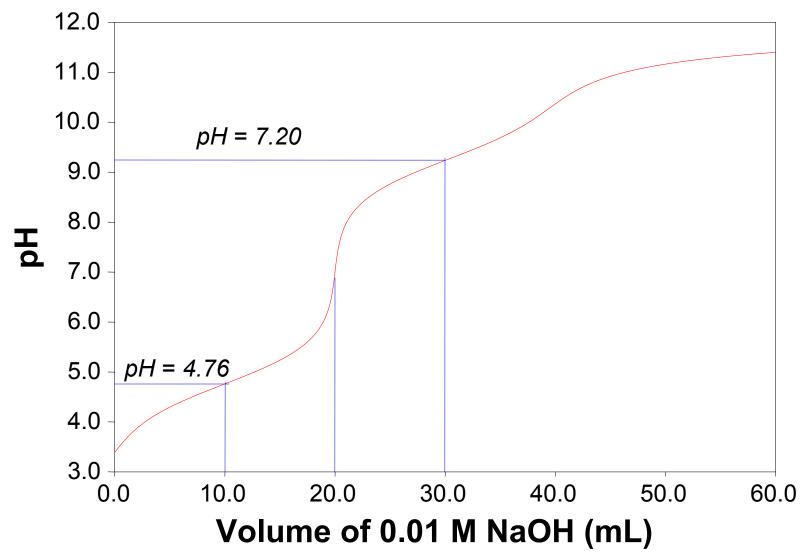
 $pK_a = 4.76$


Titration of 20 mL 0.01 M HAc with 0.01 M NaOH



Phosphoric Acid A Triprotic Acid-Base System $K_{a,1} = \frac{[H^+][H_2PO_4^-]}{[H_3PO_4]}$ $H_3PO_4 \Leftrightarrow H^+ + H_2PO_4^ K_{a,2} = \frac{[H^+][HPO_4^{2-}]}{[H_2PO_4^{-}]}$ $\overline{H_2}PO_4^- \Leftrightarrow H^+ + HPO_4^{2-}$ $K_{a,3} = \frac{[H^+][PO_4^{3-}]}{[HPO_4^{2-}]}$ $HPO_{A}^{2-} \Leftrightarrow H^{+} + PO_{A}^{3-}$ $pK_{a.1} = 2.15$ $pK_{a,2} = 7.20$ $pK_{a,3} = 12.15$

Titrating 20 mL 0.01 M H₃PO₄ with 0.01 M NaOH

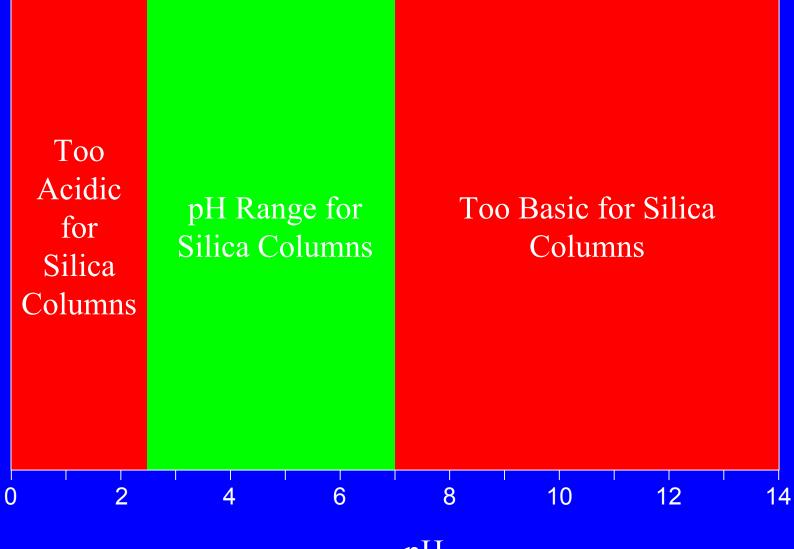

Common pH Buffers

Acetic Acid + Ammonium Hydroxide A Mixture of Two Monoprotic Acid-Base Systems

 $HAc \Leftrightarrow H^{+} + Ac^{-} \qquad K_{a,HAc} = \frac{[H^{+}][Ac^{-}]}{[HAc]}$ $NH_{4}OH \Leftrightarrow H^{+} + NH_{3} + H_{2}O \quad K_{a,NH_{4}OH} = \frac{[H^{+}][NH_{3}]}{[NH_{4}OH]}$ $pK_{a,HAc} = 4.76$ $pK_{a,NH_{4}OH} = 9.24$

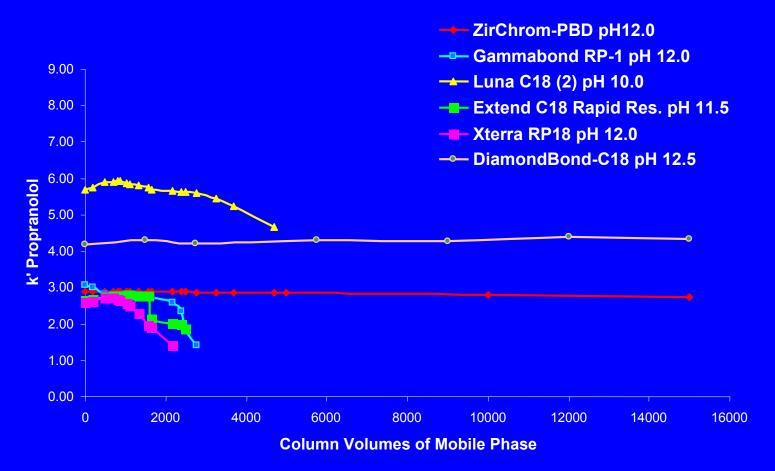
Titrating 20 mL 0.01 M HAc + 0.01 M NH₄OH with 0.01 M NaOH

Buffer Capacity of 0.01 M HAc + 0.01 M NH₄OH


Buffer Action upon Dilution

- Weak acid + Weak base
 0.085 M HAc + 0.015 NaAc
 Initial pH: 4.0
 pH after 10 times dilution: 4.0
- Strong acid
 0.0001 M HCl
 Initial pH: 4.0
 pH after 10 times dilution: 5.0

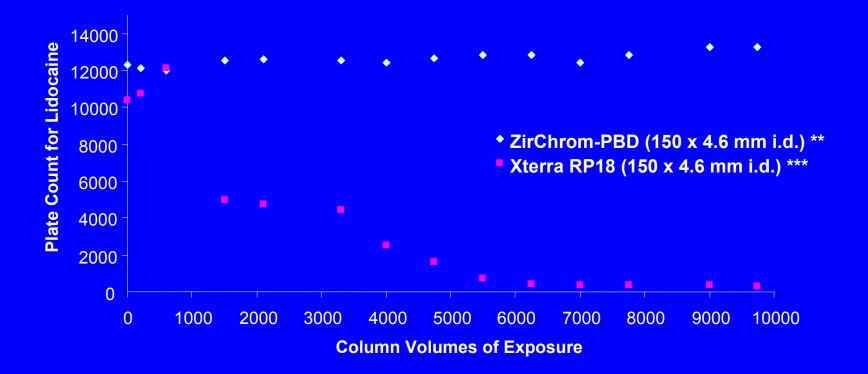
Key Issues in Buffer Preparation for HPLC


- Adequate buffer capacity—pick buffer with pK_a closest to the desired pH.
- Buffer solubility & compatibility with organic modifier.
- UV cut-off.
- Volatility for LC-MS.
- COLUMN STABILITY!

pH Range for Silica Columns

pН

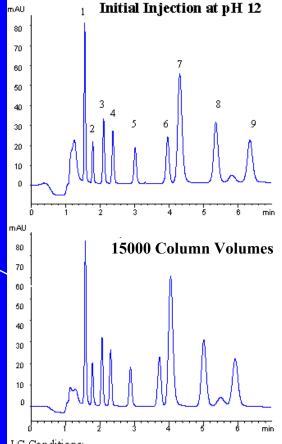
High pH Stability Comparison*



Exposure Conditions: Mobile phase, ACN/50mM Potassium phosphate buffer at indicated pH; Temperature, 30 °C.

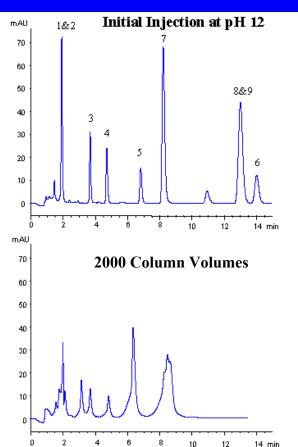
LC Conditions: Mobile phase, ACN (or THF)/50mM Potassium phosphate buffer at indicated pH; Flow Rate, 1.0 mL/min.; Temperature, 30 °C; Injection Volume, 5 uL; Detection, 254nm.

^{*} Column names are the trademarks of their respective manufacturers.


80 °C Aging Study pH 7 ZirChrom-PBD vs. Xterra RP18*

LC Conditions: Mobile phase, ACN/50mM Potassium phosphate, pH 7.0; Flow rate, 1.0 ml/min.; Temperature, 80 °C, Injection Volume, 5 uL; Detection, 254nm. **25/75 ACN/Buffer ***30/70 ACN/Buffer

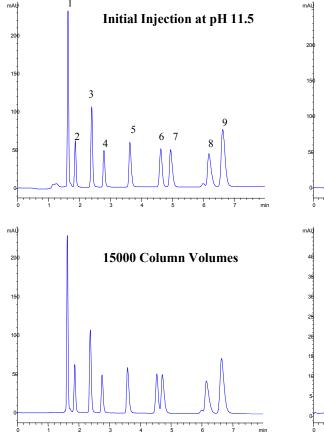
* Column names are the trademarks of their respective manufacturers.


ZirChrom[®]-PBD vs. Xterra[®] RP18

LC Conditions:

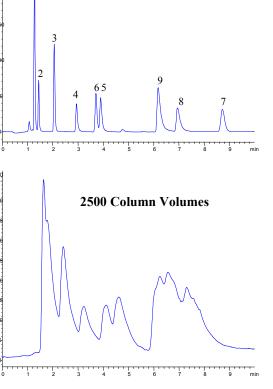
Chrom Riv

ZirChrom[®]-PBD; Mobile Phase, 28/72 acetonitrile/ 20 mM potassium phosphate at pH=12.0; Flow Rate, 1.0 mL/min.; Temperature, 30°C; Detection, 254 nm. Solutes: 1=Labetalol, 2=Atenolol, 3=Acebutolol, 4=Metoprolol, 5=Oxprenolol, 6=Lidocaine, 7=Quinidine, 8=Alprenolol, 9=Propranolol.



FOT HAR

Waters Xterra[™] RP₁₈; Mobile Phase, 35/65 acetonitrile/ 20 mM potassium phosphate at pH=12.0; Flow Rate, 1.0 mL/min.; Temperature, 30°C; Detection, 254 nm. Solutes: 1=Labetalol, 2=Atenolol, 3=Acebutolol, 4=Metoprolol, 5=Oxprenolol, 6=Lidocaine, 7=Quinidine, 8=Alprenolol, 9=Propranolol.


ZirChrom[®]-PBD vs. Extend C18 Rapid Resolution

LC Conditions:

ZirChrom[®]-PBD; Mobile Phase, 28/72 acetonitrile/ 20 mM potassium phosphate at pH=11.5; Flow Rate, 1.0 mL/min.;Temperature, 40°C; Detection, 254 nm. Solutes: 1=Labetalol, 2=Atenolol, 3=Acebutolol, 4=Metoprolol, 5=Oxprenolol, 6=Lidocaine, 7=Quinidine, 8=Alprenolol, 9=Propranolol.

Initial Injection at pH 11.5

LC Conditions:

Extend C18 Rapid; Mobile Phase, 45/55 acetonitrile/ 20 mM potassium phosphate at pH=11.5; Flow Rate, 1.0 mL/min.;Temperature, 40°C; Detection, 254 nm. Solutes: 1=Labetalol, 2=Atenolol, 3=Acebutolol, 4=Metoprolol, 5=Oxprenolol, 6=Lidocaine, 7=Quinidine, 8=Alprenolol, 9=Propranolol.

The Preparation of Buffers with ZirChrom's Buffer Wizard

http://www.zirchrom.com

How to Prepare a Buffer

- Use Henderson-Hasselbalch equation to compute amount of acid and base needed for simple monoprotic systems.
- Get out your book on quantitative analysis and calculate for an hour after studying for a day.
- Use ZirChrom Buffer Wizard for all pH buffers. http://www.zirchrom.com

🚰 Buffer Wizard - Microsoft Internet Explorer	- [Working Ol	ffline]			- D ×
<u> </u>					1
$ $ \leftarrow Back \neg \Rightarrow \neg \bigcirc $\textcircled{2}$ $\textcircled{3}$ \bigcirc \bigcirc Search \bigcirc	Favorites 🤅	🎯 History 🛛 🗟 🗸 🎒	W - E		
Address 🙋 C:\Documents and Settings\administrat	or.BASSMASTE	R\Desktop\buffer_local.h	tm	▼ ∂Go	Links »
					-
ZirChrom Buffer Wizard™Copyright© 2000					
Desired Buffer pH:	6.5		» Introduction to ZirChrom Buffer Wizard » How to Use ZirChrom Buffer Wizard		
Acid:	Trifluoroac Acetic acid H3PO4		» <u>User-Defined Acid-Base</u> » <u>Key Issues in Buffer Preparation for HPLC</u> » <u>Do's and Don'ts of Using Buffers in HPLC</u>		
Acid Stock Solution Conc. (M):	0.515	🗖 100% By wt%	» <u>UV Cutoff Wavelength for Common pH Buffers</u> » <u>pH Ranges for Common HPLC Columns</u> » <u>Common Acid-Bases Used as pH Buffers in HPLC</u>		
Desired Acid Conc. (M):	0.025		» ZirChrom Home		
Desired Total Buffer Volume (mL):	1500.0				
Base:	Tris Triethylam Pyrrolidine	ine			
Base Stock Solution Conc. (M):	0.252	🗖 100% By wt%	-		
			-		
✓ Warning	Calculate	Report	-		
Required Acid Stock Volume (mL):	72.8155				
Required Base Stock Volume (mL):	173.5914				
% of Max Buffer Capacity:	55.5				
					• •
ø			1 🖳	1y Computer	

Buffer Wizard Warning Panels

Microsoft Internet Explorer

Your buffer capacity may be too low at this pH. Suggest you choose a pH that is as close as possible to the pKa, choose a different buffer, or increase your buffer concentration. See Do's and Don'ts for additional information.

X

X

X

Microsoft Internet Explorer

Only specially stabilized silica-based columns should be used at pH's < 1.5-2 or pH's > 7-8. The vast majority of all current RPLC phases are unstable under these conditions especially at temperatures above 40 °C. All silica-based RPLC phases are much less stable in phosphate and carbonate buffers at pH's > 7.5 and should not be used under these conditions. Zirconia based RPLC phases are stable at both very low and very high pH's, at high temperature (150 °C) and in any buffer.

Microsoft Internet Explorer

Your buffer concentration may be too high. Precipitation may result when the buffer is mixed with organic mobile phase modifier. See Do's and Don'ts for additional suggestions.

Key Issues in Buffer Preparation for HPLC

- Adequate buffer capacity.
- Buffer solubility & compatibility with organic modifier.
- UV cut-off.
- Volatility for LC-MS.

The Big 14 Do's & Don'ts in Using Buffers in HPLC

- 1. Check pH of buffers *before* adding organic modifier not after.
- 2. Phosphate at pH > 7 destabilizes silica based columns. Should not be used > 40 °C. Silica columns are seriously destabilized at pH < 2.5 and pH > 7-8. Use zirconia based columns for highest stability at any pH or temperature.

3. Always *pre-check buffer solubility* by mixing the buffer with highest amount of organic modifier. Let sit for a minimum of 30 minutes to see if buffer precipitates. The buffer cation seriously effects its solubility. Sodium salts tend to be least soluble.

- The buffer cation (Na⁺ < K⁺ < NH₄⁺ < TEA⁺) can help suppress silanophilic interactions in the order listed.
- 5. It is important to flush silica based columns with 15-20 volumes of buffer free eluent and then with pure methanol or pure acetonitrile (preferred) prior to overnight storage.
- 6. 200 ppm of sodium azide or alternatively a minimum of 20% (by volume) organic modifier should be added to the buffer to suppress bacterial growth.

7. 10-50 mM buffer is usually adequate. 25 *mM is good to start*. Most inorganic buffers are more soluble in methanol than acetonitrile or THF.

8. If peak shape of acidic or basic analytes is poor increase the buffer capacity, or decrease the amount of sample injected. *Use more than 5 mM buffer and make sure that the buffer capacity is at least 20% of the maximum possible for the concentration used.*

- Buffers containing ammonium or triethylammonium are more volatile than those containing Na⁺, K⁺, etc.
- 10. Buffers containing acetate, formate, fluoride, are more volatile than phosphate, citrate, etc.
- 11. Carbon dioxide can be lost by excessive sparging of the buffer. pH increases.

- 12. TFA and TEA degrade with time and the UV cutoff deteriorates.
- 13. TFA in glass ampoules gives better UV cutoff than bottled TFA.
- 14. Phosphate, has better UV cutoff than TFA, acetic acid or citric acid.

Effect of Organic Solvent on pH Buffers

I. Canals, J. A. Portal, E. Bosch, M. Roses, "Retention of Ionizable Compounds on HPLC. 4. Mobile Phase pH Measurement in Methanol/Water", *Anal. Chem.* 2000, 72, 1802-1809.

Thanks *very much* for listening!

ZirChrom Separations & Cabot Corporation Partners in Chromatography

PLEASE VISIT BOOTH 220-222

For more information and web access to the *free* **Buffer Wizard: www.zirchrom.com**

PRP SiQ ₂				Chro arat				1	S												
SOLVENT Methanol Acetontitrile THF Isopropanol Water	UV (A=0.02 250 210 300 250 <190	Cutoff (n m) 2 A=1.0 205 190 212 205 205 4190	L(cm) 5 0. 10 0. 15 0.	and Volumes (c Diamete 1 2.1 0271 0.119 0542 0.239 0812 0.358 osity = 0.69.	- F	4 0.: 1.	.6 573 146 719	i				CI AI PI	Acio DOł iph. /ridii nilini	N ne	ase		4.) 9.0 5	<mark>5-5.</mark> 5-5. 5.17 4.6	_		
BUFFERS	pKa	Buffer Range	UV Cutoff (10mM) in nm	Solvent Acetic acid Acetone			_			s	olv	en	t M	lisc	ibil	lity	Ta	ble	- United		
Trifluoroacetic*	0.5	1.5-2.5	210	Acetonitrile Carbontetrachloride			_	7													
H ₃ PO ₄	2.1	< 3.1		Chloroform					1												
	7.2	6.2-8.2	<200	Cydohexane						_				-							
	12.3	11.3-13.3		Cyclopentane Dichloromethane						_	1						:	scible			
Citric acid	3.1			Dimethyfformamide	+		+				-	٦.					immu Misci				
	4.7	2.1-6.4	230	Dioxane												_					
	5.4	211-011	200	Ethyl acetate Ethanol						_				_							
Formic acid*	3.8	2.8-4.8	210	Diethyl ether																	
Acetic acid*	4.8	3.8-5.8	210	Hexane												h					
Carbonate	6.4	5.4-7.4	<210	Methanol Pentane										-							
Carbonate	10.3	9.3-10.3	\$2.10	n-Propanol															1		
Bis-tris propane	6.8	5.8-7.8	215	Diisopropyl ether Tetrahydrofuran	\vdash	_	-			-				-	-	\square	_	-			
nis-uis hinhaus	9.0	8.0-10.0	213	Toluene																	
Tris	9.0 8.3	7.3-9.3	205	Water							4	2									-
Ammonia*	0.3 9.2	7.3-9.3 8.2-10.2	205				cetonitrile schontotrachlori				Dionioromemane Dimethylformamide							ether	gu		
					ν		a 5	E	ane	tan			tate		Ū.		-				
1-methylpiperidine	10.1	9.1-11.1	215		aci	e :	nitti etet	ofor) ex	0 e D	Purfe	e	a ce	- 1	u u	e e	e		1pA	e U	
Triethylamine*	11.0	10.0-12.0	<200		Acetic acid	Acetone	Acetonitrile Parbontotra	Chloroform	Cyclohexane	Cyclopentane	oute F	Dioxane	Ethyl acetate	Ethanol Northol -	<u>Hexane</u>	Methanol	Pentane	n-rropanoi Diisopropyl	Tetrahydrofuran	Toluene	Water
* denotes volatile bu	itter				Ac	A.	ťί	ů č	0	6 2	a i	ā	Ш	ШŻ	E I	ž	e l	2 0	1 e	Ê î	á

To access our FREE automated HPLC Buffer Wizard calculator and a great deal of other HPLC data visit our web site at http://www.zirchrom.com World's Most Robust HPLC Columns. Telephone: 763 -421-5264, Fax: 763-421-2319

Product List

Part #	Product Name	Chromatographic Mode and Uses
ZR01	ZirChrom [®] -CARB	Reversed-Phase
ZR02	ZirChrom [®] -PHASE	Normal Phase and SEC
ZR03	ZirChrom [®] -PBD	Reversed-Phase
ZR04	ZirChrom [®] -WCX	Weak Cation-Exchanger
ZR05	ZirChrom [®] -WAX	Weak Anion-Exchanger and Sugar Analysis
ZR06	ZirChrom [®] -SAX	Strong Anion-Exchanger
ZR07	ZirChrom [®] -SHAX	Strong Hydrophilic Anion-Exchanger
ZR08	ZirChrom [®] -PEZ	Cation-Exchanger for Proteins