

Fast, LC/MS Compatible Separation of Opioids on ZirChrom®-EZ

Clayton McNeff, Ph.D. and Dwight Stoll ZirChrom Separations, Inc.

Technical Bulletin #283

This method allows for baseline resolution of the metabolite and the parent compound using a MS-compatible ammonium acetate buffer

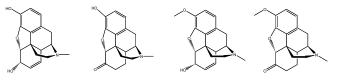
Figure 2: Separation of 1=Morphine, 2=Hydromorphone, 3=Codeine, 4=Hydrocodone on ZirChrom[®]-EZ at 35 °C.

ZirChrom's newest reversed-phase column, ZirChrom®-EZ, provides unique selectivity while simplifying the buffer selection process in the pH range of 1-10. This new ease-of-use capability, along with its orthogonal selectivity for pharmaceutical compounds, makes ZirChrom®-EZ well suited for LC/MS applications.

This method can be tailored to your specific application needs. ZirChrom method developers can help to optimize and transfer this method to your site. Please contact ZirChrom technical support at 1-866-STABLE-1 or support@zirchrom.com for details.

ZirChrom phases offer unique selectivity, high efficiency, and excellent chemical and thermal stability.

Acknowledgements


Randy Clouette, Clinical Reference Laboratory, (Lenexa, Kansas, USA)

ZirChrom Separations, Inc.

617 Pierce Street, Anoka, MN 55303 1-866-STABLE-1 support@zirchrom.com

Visit <u>www.zirchrom.com</u> for more application notes using ultrastable, high efficiency ZirChrom columns.

The structural similarity of hydromorphone to morphine and hydrocodone to codeine requires a very selective stationary phase. Due to the fact that these compound pairs have identical molecular weights, a MS-detector is unable to distinguish between the parent compound and its metabolite. The unique characteristics of the ZirChrom®-EZ column allow for fast resolution of all four of these opioids using a simple acetonitrile/water gradient in combination with a MS-compatible ammonium acetate buffer at pH 5.0. The resulting method allows reliable quantitation by LC/MS.

 Morphine
 Hydromorphone
 Codeine
 Hydrocodone

 M.W. 285.33
 M.W. 299.36
 M.W. 299.36

Figure 1: Structures of parent opioid compounds and their metabolites.

Introduction

The opioids morphine and codeine are commonly analyzed using Liquid Chromatography/Mass Spectrometry (LC/MS) in the clinical laboratory because of the low limits of detection required. The structural similarity of these molecules presents a significant separation challenge. Generally, a MS-detector does not require as much resolution as a UV-detector. However, in the case of these four opioids the MS-detector cannot differentiate between the parent compound and its metabolite, which have identical molecular weights.

Experimental

A mixture of four opioids was separated at 35 °C using a ZirChrom®-EZ column. The separation conditions were as follows:

Column: ZirChrom®-EZ, 50 mm x 4.6 mm i.d.

(Part Number: EZ01-0546)

Mobile Phase: Gradient Elution

A: acetonitrile

B: 20mM ammonium acetate, pH 5.0

Time	%A	%B
0	10	90
5	90	10

Temperature: 35 °C with MetaloxTM 200-C Column Heater

Injection Vol.: 2 µl

Detection: UV at 254 nm